

Blowing up N_t in space

Simple population:

N(t)

Age/stage-structured:

 $N_i(t)=\{N_1(t),N_2(t),\ldots,N_k(t)\}$

- where i represents structure, with k age/stage classes

Spatial structure:

$$N_i(t)=\{N_1(t),N_2(t),\ldots,N_k(t)\}$$

• where i is location, with k locations

A metapopulation is a **population of populations**

▲ Figure 53.21 The Glanville fritillary: a metapopulation. On the Åland Islands, local populations of this butterfly (filled circles) are found in only a fraction of the suitable habitat patches (open circles) at any given time. Individuals can move between local populations and colonize unoccupied patches.

Spiked speedwell (Veronica spicata)

- 1. The local populations MUST be somehow connected via **dispersal**.
- 2. There must be areas of (near) zero density in between. The "in-between" is referred to as the **matrix**.

Canonical examples

- Fragmented habitats
- Island populations

Population vs. **Metapopulation**

WA sea otters

- Closed population
 - only **Birth** and **Death**
- Questions:
 - growth | dynamics | age structures
- **Extinction** of interest mainly due to stochasticity, low numbers

ALL sea otters

• Open population

• Immigration! Emigration!

- Questions:
 - given that a local population might go **extinct**, will the metapopulation go **extinct**?
 - $\circ~$ what is the proportion of occupied patches?

What makes it a metapopulation? **Dispersal distance**

Sale, Hanski, Kritzer 2006

As long as there is *some* local connectivity among populations.

By that metric ...

Polar bear (*Ursus maritimus*)

and caribou / reindeer (*Rangifer tarandus*)

Are also **metapopulations**

Population persistence of a single population?

e = *local* probability of extinction

time steps	Prob. persistence
1:	1-e
2:	(1-e)(1-e)
3:	(1-e)(1-e)(1-e)
4:	(1-e)(1-e)(1-e)(1-e)
<i>t</i> :	$(1-e)^t$

Take away: Even with very LOW probability of extinction, you WILL go extinct.

MO: Population persistence of a **metapopulation**

k populations, t time steps

Pops:	1 time step	t steps
1:	1-e	$(1-e)^t$
2:	1 - e imes e	$(1-e^2)^t$
3:	$1 - e \times e \times e$	$(1-e^3)^t$
k:	$1-e^k$	$(1-e^k)^t$

Metapopulations are resistant to extinction!

$$P(k,t) = (1-e^k)^t$$

Metapopulations **dramatically** spread out / buffer the risk of extinction!

But still ... if the ONLY process is extinction, you **will go extinct** (sorry!)

M1: Let's add colonization

Island-Mainland model

- Every (local) population has a probability of going extinct: p_e
- But every empty location has a probability of getting colonized: p_c

Note - there is an important (implicit) assumption that population very quickly hits **carrying capacity**, so essentially *instant* saturation.

The mainland is a constant, independent source of potential colonizers. Also known as **propagule rain**.

(echoes of *biogeography*).

M1: Island-Mainland Model

Q: How many occupied patches might we expect?

 $E(N_{t+1})=N_t-p_eN_t+\left(K-N_t
ight)p_c$

define proportion of populated patches: $f_t = E(N_t)/K$, and define *equilibirum*:

$$f^*:=f_{t+1}=f_t$$

...then some math happens...

$$f^* = rac{p_c}{p_c+p_e}$$

The equilibrium is a balance between colonization and extinction rate.

Continuous time formulation

Very general metapopulation model:

 $rac{df}{dt} = c(f) - e(f)$

Where *c* = colonization rate, *e* = extinction rate. Can be (often are!) functions of (f) (occupied proportion).

Note: this is similar to

$$\frac{dN}{dt} = b(N) - d(N).$$

which is the foundation of population growth models)

Assumptions:

- Deterministic (i.e. k o ∞)
 Continuous-time, unstructured extinction / colonization process
 "Rates" are like infinitesemal probabilities

But - lots of elegant analyses can be made messing with this model.

M1: Mainland-Island

$$\frac{df}{dt} = c - e$$

Colonization is constant, so proportional to **available** patches:

$$c=p_c(1-f)$$

Extinction is constant, so proportional to **occupied** patches:

 $e=p_ef$

so:

$$rac{df}{dt}=p_c(1-f)-p_ef$$

The rate of change of the occupied patches GROWS in proportion to unoccupied patches and FALLS in proportion with occupied patches.

M2: Internal Colonization

$$rac{df}{dt} = p_c f(1-f) - p_e f$$

Extinction *rate* is constant, as before:

 $e = p_e f$

Colonization can only come from **occupied** patches:

 $c=p_{c}\,f\left(1-f
ight)$

If no patch is colonized (f=0), nothing can colonize.

If the population is 100% occupied (f=1), there is nothing to colonize.

M2: Internal Colonization - with Schematic

$$rac{df}{dt} = p_c f(1-f) - p_e f$$

Extinction is constant, as before:

$$e = p_e f$$

Colonization can only come from **occupied** patches:

$$c=p_{c}\,f\left(1-f
ight)$$

The maximum rate of colonization occurs when f = 1/2.

Equilibrium occurs when:

$$f^* = egin{cases} 1 - p_e/p_c & ext{when} & p_e < p_c \ 0 & ext{when} & p_e \geq p_c \end{cases}$$

M3: Rescue Effect

$$\frac{df}{dt} = p_c(1-f) - p_e f(1-f)$$

Assumes that if you have a lot of neighbors some loose "propagules" will buffer you from extinction.

Equilibrium states:

 $f^* = egin{cases} p_c/p_e & ext{when} & p_e > p_c \ 1 & ext{when} & p_e \leq p_c \end{cases}$

Even with higher extinction rate than colonization rate, there will always be some occupied patches!

M4: Rescue Effect with Internal Colonization

$$rac{df}{dt} = p_c f(1-f) - p_e f(1-f)$$

Only equilibria: 0, if $p_e > p_c$ or 1, if $p_e \leq p_c$.

Fundamental conclusions:

metapopulation under equilibrium MUST be rare! Either everything colonizes or nothing colonizes.**

Four models

With rather different predictions! (Nice synthesis - mainly due to Gotelli.)

Some characters

Richard Levins (1930-2016)

- "Scholarship that is indifferent to human suffering is immoral.""Our truth is the intersection of independent lies."

llkka Hanski (1953-2016)

