

Four metapopulation models

With very different predictions! (Nice synthesis - mainly due to Gotelli.)

Model predictions:

	External Colonization	Internal Colonization
Constant Extinction	$rac{p_c}{p_c+p_e}$	0 or $1-p_e/p_c$
Rescue Effect	$rac{p_c}{p_e}$ or 1	0 or 1

So ... are metapopulations stable or not!?

Theory vs. Reality

Assumptions

- "Instantaneous" (binary) population growth straight to ${\cal K}$
- Homogeneous patch quality
- Homogeneous growth process
- Implicit spatial structure (all patches affect all others equally)
- Deterministic process

Complications

- You can have **none**, **some**, or **lots** in a patch
- Unique K_i
- Unique r_i
- Neighboring patches are more locally important, some patches are very connected, some are very distant
- Stochasticity is very important, esp. for extinction probabilities

Which is it!?

It's hard to do metapopulation studies!

The longest-term, most data-rich study ever ...

leads to somewhat meh results

Sami P. Ojanen^{1,a}, Marko Nieminen^{1,a}, Evgeniy Meyke¹, Juha Pöyry² & Ilkka Hanski¹

General principles of metapopulation management

1. Can be challenging because **equilibrium** may or may not exist!

- 2. Metapopulation will surely become extinct if patches are removed ...
- 3. ... but **facilitating recolonization** and maintaining **large patches** can help.
- 4. As many fragments as possible should be preserved...
- 5. ... but distances can't be too large, or no recolonization or rescue effect.
- 6. Properties of the matrix are important: corridors and stepping stones.
- 7. Recolonization has to be observed within a few generations for metapopulations to have a chance.
- 8. Sizes of patches is important to hedge against demographic stochasticity.

(Hanski, I. 1997. Metapopulation biology. Pp. 69-91. San Diego, USA, Academic Press.)

Question: How is **poaching** affecting recovery of Pinto Abalone?

- important cultural / subsistence item for Indigeneous communities on Pacific coast.
- overharvested commercially to near extinction
- commercial harvest **banned** in 1990
- recovering very slowly ... or not at all

Haliotis kamtschatkana

VANCOUVER SUN

s Opinion Business Arts Life Hot Topics Puzzles Comics Healthing Driving ePaper Remembering Trav

Rare B.C. abalone easy pickings
 for unscrupulous poachers

The rarest and most expensive B.C. seafood is easy pickings for unscrupulous poachers, who, with a little local knowledge and scuba gear, can decimate a patch of abalone in a matter of hours or days.

Larry Pynn

in

Published Oct 29, 2009 • Last updated Nov 01, 2009 • 11 minute read

CBC MENU -

NEWS Top Stories Local Climate World Canada Politics Indigenou

Dm sibilhaa'nm da laxyuubm Gitxaala: Picking Abalone in Gitxaala Territory

Charles R. Menzies

In the face of aggressive overfishing of bilhaa (abalone) by non-Indigenous commercial fishermen, the Canadian Department

of Fisheries and Oceans closed all forms of harve harvesting practices of Gitxaala, an indigenous antiquity of Gitxaala fisheries practices. The paj

Key words: abalone, indigenous fisheries, north

Bilhaa—Harvest, Processing, and Use

The Gitxaala approach to bilhaa harvesting is and has been explicitly organized to ensure the continuation of the biological stock. Gitxaala harvesting practices reflect the cultural keystone role of bilhaa as a treasured entity, a social being with whom we share relations, and as an important cultural marker of being a ranked member of Gitxaala society.

British Columbia

Richmond fish broker fined \$77,500 for selling endangered abalone

DFO says shellfish was concealed in a warehouse room

f 🄰 🖾 🧔 in

Question: How is **poaching** affecting recovery of Pinto Abalone?

Solution: lots of modeling!

ARTICLE

Modelling the impact of poaching on metapopulation viability for data-limited species

Abbey E. Camaclang, Janelle M.R. Curtis, Ilona Naujokaitis-Lewis, Mark S. Poesch, and Marten A. Koops

3/20/	Submodel	Parameter	Description	isasenne values used for initializing simulations	source	каnge (analysi	or values used for sensitivity s	_	a			
N on 0	Habitat suitability model	Habitat suitability (HS)	Where HS = 0, denotes poor suitability of habitat attributes ² ; where HS = 4, denotes high suitability of habitat attributes	0-4	Jamieson et al. 2004	Sample	d from normal distribution, with n = mean (HS); SD = SD (HS); = HS threshold	th				
ISO		Habitat suitability	Minimum HS value where habitat is highly	3	J. Lessard, personal	Sample	d from normal distribution, wi	th				
MAD		Inreshold Neighbourhood distance (NghbdDistance)	Based on movement patterns of tagged abalone	230 m	J. Lessard, personal	Sample	$h = HS$ threshold, $CV^{p} = 10\%$ of from normal distribution, with $h = NghbdDistance$, $CV = 10\%$	th		Two	full pages	just to list
NISN	Population model	Maximum growth rate, R _{max}	Based on maximum recruitment in highly suitable habitats	1.6	Zhang et al. 2007; Chadès et al.	Sample mear	d from normal distribution, with a = mean (R_{max}), SD = SD (R_{max}),	th		TWO	iun pages	Just to list
SCO		Carrying capacity, k	Applies to all stages, where ths = total patch	k = 6500-ths	2012 Chadès et al. 2012	or CV Sample	l = 10% d from normal distribution, with $r = h_{c} C V = 10\%$	th		tho n	arameter	cl
I.M.		Density dependence	Ricker function ^c , based on abundance of all	-In(R _{max})-N00	Zhang et al. 2007	Ricker,	1 = K, C.Y = 10%			une p	arameter	5:
OF		function	stages	$R(t) = R_{max} \cdot e^{K}$		Beverto	n-Holt:					
NIN .						R(t) = Ceiling	$\frac{R_{\max} \cdot N(t)}{R_{\max} \cdot N(t) - N(t) + K}$					
by C		Survival rate	Based on survey estimates of age-specific	0.818 for all stages	Chadès et al. 2012	Sample	d from lognormal distribution,					
Ins		Fecundities	densities Based on estimates of age-specific densities and	Age 4 = 0.074	Chadès et al. 2012	with Sample	mean = survival rate, CV = 10% d from lognormal distribution,					
rsona			masses from survey data	Age 5 = 0.1409 Age 6 = 0.2057		mean	n = mean (fecundities), CV = 10%					
Sec.				Age 7 = 0.2655 Age 8 = 0.3207		_						
Fo				Age 9 = 0.3695 Age 10 = 0.4031		- 11						
ê				Age 11 = 0.4299		- 11						
-u u				Age 12 = 0.4519 Age 13+ = 0.6306		- 11	898				Can. J. F	ish. Aquat. Sci. Vol. 74, 2017
ded		Initial abundances, No	Abalone abundance in patch i at time 0;	$N_0 = 975$ -ths	Lessard et al. 2007	San						
and			assuming population abundance is at 15% of historical abundance (just above percent			п	Table 2. List of in	nput pa	rameters used to model poaching	g of northern abalone in	Barkley Sound.	
MO			declines since 1978)				Parameter		Description	Estimated value	Range of values used for	Reference or source
9	Dispersal model	function, m _a	Proportion of individuals dispersing from patch i to patch j, located x units apart	For $x \le 23.8$ km, $m_{ij} = 0.1258 e^{-0.2148x}$; for	Jamieson et al. 2004 ^d	Not	Poaching extent		Total number of populations	No data available	1-10	NA
š. 🖕				$x > 23.8$ km, $m_{ij} = 0$					poached for each event			
lion.		Dispersal survival	Proportion of dispersers that survive movement from patch i to patch i	1	No data available	San	Poaching location	1	Preferred poaching locations	No data available	Random = no preference	Raemaekers and Britz 2009
Shot		Correlation distance	Correlation in survival and fecundity among	0	No data available	Bas			relative to access points			Tailby and Gant
da a		function	populations			s					For a remote locations preferred	2002
H. L. I	*Habitat attributes include depth, currents, kelp abundance, and physical structure. *Goefficient of variation.				_	2002				Near = accessible locations preferred		
Ca	Zhang et al. (2007)	reported similar statistical sup	port for Ricker and Beverton-Holt models.			- 11	Spatial correlatio	n	Presence of spatial	No data available	Random = each population	NA
ch Press	-runction nt to sim	nuated data generated by the o	cosmographic circulation model.				NO NO		correlation in poaching		poached independently Correlated = nearby populations are poached first	
							Poaching frequen	ncy	Frequency of poaching events	0.24-0.48 per year	0.24-0.48	COSEWIC 2009
							Poaching intensit	ty	Mortality rate of abalone from each poaching event	0.7-0.9	0.05-0.95	J. Lessard, personal communication
							4		the second second second			

Habitat submodel

Patchy locations ... looks like **metapopulation**

Submodel	Parameter	Description	Baseline values used for initializing simulations
Habitat suitability model	Habitat suitability (HS)	Where HS = 0, denotes poor suitability of habitat attributes ^a ; where HS = 4, denotes high suitability of habitat attributes	0-4
	Habitat suitability threshold	Minimum HS value where habitat is highly suitable in three of four attributes	3
	Neighbourhood distance (NghbdDistance)	Based on movement patterns of tagged abalone	230 m
Legend			
Communities			
Habitat Suitability In	dex	a for the wetter	
			A AND AND
3		1	
0 4	,000 8,000 16,000	24,000 32,000	M2/L

Population submodel

Submodel	Parameter	Description	Baseline values used for initializing simulations
Population model	Maximum growth rate, R _{max}	Based on maximum recruitment in highly suitable habitats	1.6
	Carrying capacity, k	Applies to all stages, where ths = total patch habitat suitability	k = 6500·ths
	Density dependence function	Ricker function ^c , based on abundance of all stages	$R(t) = R_{\max} \cdot e^{\frac{-\ln(R_{\max}) \cdot N(t)}{K}}$
	Survival rate	Based on survey estimates of age-specific densities	0.818 for all stages
	Fecundities	Based on estimates of age-specific densities and masses from survey data	Age $4 = 0.074$ Age $5 = 0.1409$ Age $6 = 0.2057$ Age $7 = 0.2655$ Age $8 = 0.3207$ Age $9 = 0.3695$ Age $10 = 0.4031$ Age $11 = 0.4299$ Age $12 = 0.4519$ Age $12 + 0.6306$
	Initial abundances, N_0	Abalone abundance in patch i at time 0; assuming population abundance is at 15% of historical abundance (just above percent declines since 1978)	$N_0 = 975 \cdot \text{ths}$

all our friends represented:

- Growth rate R_{max}
 Carrying capacity k
 Age-structured fecundity

- Survival
- N_0

Dispersal submodel

_

	_		Baseline values used for	Very typica
Submodel	Parameter	Description	initializing simulations	
Dispersal model	Dispersal distance	Proportion of individuals dispersing from patch i	For $x \le 23.8$ km, $m_{ij} =$	
	function, m_{ij}	to patch <i>j</i> , located <i>x</i> units apart	0.1258 e ^{-0.2148x} ; for	
	-		$x > 23.8$ km, $m_{ii} = 0$	
	Dispersal survival	Proportion of dispersers that survive movement from patch <i>i</i> to patch <i>i</i>	1	where d_{AE}
	Correlation distance function	Correlation in survival and fecundity among populations	0	
				robability of dispersa

al dispersal **kernel**:

$$Pr(A\,to\,B)=lpha\,e^{-eta\,d_{AB}}$$

 $_{\rm B}$ is distance between A and B.

Poaching submodel

Parameter	Description	Estimated value or units	Range of values used for sensitivity analysis	Reference or source
Poaching extent	Total number of populations poached for each event	No data available	1–10	NA
Poaching location	Preferred poaching locations relative to access points	No data available	Random = no preference	Raemaekers and Britz 2009; Tailby and Gant 2002
			Far = remote locations preferred Near = accessible locations preferred	
Spatial correlation	Presence of spatial correlation in poaching	No data available	Random = each population poached independently Correlated = nearby populations are poached first	NA
Poaching frequency	Frequency of poaching events	0.24–0.48 per year	0.24-0.48	COSEWIC 2009
Poaching intensity	Mortality rate of abalone from each poaching event	0.7–0.9	0.05–0.95	J. Lessard, personal communication

Table 2. List of input parameters used to model poaching of northern abalone in Barkley Sound.

Heavy use of **sensitivity analysis** for unknown or difficult to know parameters,

Abalone results

Used: metapopulation **probability of extinction = 0.1** as threshold, (corresponding to IUCN definition of **vulnerable**).

Determined that **yes** in nearly ALL modeled scenarios, reasonable estimates of poaching lead to a higher **risk of extinction** for the metapopulation.

Pop Quiz: Who Else Loves Abalone?

our old friends!

NEXT TOPIC: Species Interactions!

For a fascinating deep dive in the interactions & conflicts among **abalone**, **sea otters**, **conservation laws**, and **First Nation stewardship** check out **this podcast**:

KELP WORLDS

In this trilogy we dive deep into the watery worlds of Kelp (and the many creatures that inhabit them). We speak to the godfather of marine ecology, discover how a colonial lens re-wrote the history of Indigenous food, and we travel to a very special archipelago to get a glimpse of a potential future for marine species conservation.

