

Super fast primer on statistical modeling

Everything you need to know to do 95% of all wildlife modeling in less than an hour and **FOUR** (or **FIVE**) easy steps!!

- I. Linear modeling
- II. Multivariate modeling
- III. Model selection
- IV. Generalized linear modeling
 - Poisson; Binomial
- V. Prediction

Step I: Linear modeling

... is a very general method to quantifying relationships among variables.

aka *LINEAR REGRESSION*, except I really don't like that term, for a variety of reasons.

3/30

Linear Models

Deterministic:

$$Y_i = a + bX_i$$

a - intercept; b - slope

Probabilistic:

$$Y_i = lpha + eta X_i + \epsilon_i$$

lpha - intercept; eta - slope; ϵ - $oldsymbol{randomness!}$: $\epsilon_i \sim \mathcal{N}(0,\sigma)$

Fitting linear models is very easy in

Point Estimate

This command fits a model:

So for each 1 cm of length, add another 754 grams,

```
i.e. (\widehat{\beta} = 0.754)
```

plot(Weight ~ Length, data = pups)
abline(my_model)

5/30

Some comments on linear models

$$Y_i \sim \alpha + \beta X_i + \epsilon_i$$

- 1. ϵ_i is unexplained variation or residual variance. It is often POORLY/WRONGLY referred to as "error". It is a random variable, NOT a parameter
- 2. A **better**, more sophisticated way to think of this model is not to focus on isolating the residual variance, but that the whole process is a random variable:

$$Y_i \sim \mathcal{N}(lpha + eta X_i, \sigma)$$

This is better because: (a) the three parameters (α, β, σ) are more clearly visible, (b) it can be "generalized". For example the **Normal distribution** can be a **Bernoulli distribution** (for binary data), or a **Poisson distribution** for count data, etc.

3. $\alpha + \beta X_i$ is the **predictor**, or the "modeled" portion. There can be any number of variables in the **predictor** and they can have different powers, so:

$$Y_i \sim \mathcal{N}(lpha + eta X_i + \gamma Z_i + \delta X_i^2 +
u X_i Z_i, \sigma)$$

is also a **linear** model.

Statistical inference

Statistical inference is the *science / art* of using **data** to **estimate the parameters** of a model. This is also called **fitting** a model.

Two related goals:

- 1. obtaining a **point estimate** and a **confidence interval** (precision) of the parameter estimate.
- 2. Assessing whether particular (combinations of) factors, i.e. **models**, provide any **explanatory power**.

This is (almost always) done using **Maximum Likelihood Estimation**, i.e. an algorithm searches through possible values of the parameters that make the model **MOST LIKELY** (have the highest probability) given the data.

7 / 30

Statistical output

```
##
## Call:
## lm(formula = Weight ~ Length, data = pups %>% subset(Island ==
##
## Residuals:
           1Q Median
                           3Q
## -7.498 -1.718 0.023 1.764 7.276
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) -49.14222 5.75796 -8.535 1.81e-13 ***
                           0.05193 14.510 < 2e-16 ***
               0.75345
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.761 on 98 degrees of freedom
## Multiple R-squared: 0.6824, Adjusted R-squared: 0.6791
## F-statistic: 210.5 on 1 and 98 DF, p-value: < 2.2e-16
```

1. Point estimates and confidence intervals

```
Intercept ( lpha ): -49.14 \pm 11.5
Slope ( eta ): 0.75 \pm 0.104
```

2. Is the model a good one?

p-values are very very small, in particular for **slope**

Proportion of variance explained is high:

$$R^2 = 0.68$$

Models and Hypotheses

Every p-value is a Hypothesis test.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-49.142	5.758	-8.535	0
Length	0.753	0.052	14.510	0

• First hypothesis test: H_0 intercept = 0 • Second hypothesis: H_0 slope = 0

Both null-hypotheses strongly rejected.

9/30

Linear modeling with a discrete factor

$$Y_{ijk} = \alpha + \beta_i \operatorname{Sex}_{ijk} + \epsilon_{ijk}$$

m(Weight ~	Sex, da	ta = pup	s)	
term	estimate	std.error	statistic	p.value
(Intercept)	30.151	0.317	95.119	<2e-16
SexMale	6.149	0.429	14.337	<2e-16

Intercept here means mean female weight.

Note - this is very similar to a *t*-test comparing two means (baby stats).

Linear modeling with multiple factors

Very easy to extend this to more complicated models!

$$Y_{ijk} = \alpha + \beta_i \operatorname{Island}_{ijk} + \gamma_j \operatorname{Sex}_{ijk} + \epsilon_{ijk}$$

lm(Weight ~ Island + Sex, data = pups)

term	estimate	std.error	statistic	p.value
(Intercept)	31.04	0.54	57.62	<1e-16
IslandChirpoev	-2.23	0.67	-3.34	0.001
IslandLovushki	-0.84	0.67	-1.26	0.21
IslandRaykoke	0.14	0.67	0.21	0.83
Is land Srednova	-1.50	0.67	-2.24	0.03
SexMale	6.14	0.42	14.47	1e-16

11/30

Analysis of Variance (ANOVA)

Is a technique for seeing which effect in a model is **significant**. Each row tests a **hypothesis** that the effect coefficients are non-zero.

In this model, we include an **interaction**, asking: "Do different Islands have different patterns among Sexes? (and vice versa)"

```
Analysis of Variance Table
Response: Weight
           Df Sum Sq Mean Sq F value
                                         Pr(>F)
Island
                              5.0114 0.0005763 ***
                443.3
                       110.8
               4623.9 4623.9 209.0758 < 2.2e-16 ***
Sex
Island:Sex
            4
                 71.4
                         17.9
                                0.8075 0.5207439
Residuals 488 10792.6
                         22.1
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' '
```

Interpretation:

- Differences between SEXES very significant (very very small p-value)
- Differences among ISLANDS very significant (small p-value)
- SEX differences among ISLANDS consistent (large interaction p-value)
- ISLANDS differences between SEXES consistent (large interaction p-value)

Combining **continuous** and **categorical** variables

Exploratory plot

It looks like, maybe, there are different body proportions for **MALES** and **FEMALES**.

ANOVA table confirms our suspicion!

```
Analysis of Variance Table

Response: Weight

Df Sum Sq Mean Sq F value Pr(>F)

Length 1 12413.8 12413.8 1957.969 < 2.2e-16 ***

Sex 1 257.3 257.3 40.582 4.321e-10 ***

Length:Sex 1 128.1 128.1 20.208 8.662e-06 ***

Residuals 494 3132.0 6.3

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
```

Highly significant interaction term.

13/30

Step III: Model Selection

ANOVA is helpful for "nested" models, where each one is a subset of another more complex one. For comparing a **set of competing,non-nested** models, we use .

Δ AIC table

	Model	k	R2	logLik	AIC	dAIC
M0	1	1	0.000	-1569.5	3143.1	835.8
M1	Island	5	0.028	-1562.5	3137.0	829.7
M2	Sex	2	0.293	-1483.2	2972.4	665.1
М3	Length	2	0.779	-1193.4	2392.8	85.5
M4	Length + Sex	3	0.795	-1174.5	2357.0	49.7
M6	Length * Sex	4	0.803	-1164.5	2339.0	31.7
M5	Length + Sex + Island	7	0.811	-1155.0	2325.9	18.6
M 7	Length * Sex + Island	8	0.818	-1144.6	2307.3	0.0
M8	Length * Sex * Island	20	0.824	-1137.1	2316.1	8.8

Degrees of freedom *k*:

• Number of estimated parameters. Measure of *complexity*.

Coefficient of determination R²:

- Percent variation explained. It ALWAYS increases the more complex the model.
- Is is always zero for the NULL model.

log-likelihood $\log(\mathcal{L})$:

Total probability score of model. It ALWAYS increases the more complex the model.

Akaike Information Criterion:

- $AIC = -2\log(\mathcal{L}) + 2k$
- A measure of model quality.
- Smaller is better It starts getting bigger if the model complexity gets too high.
- The lowest AIC value is the "best" model.
- (but within 2 ΔAIC is pretty much equivalent to best)

AIC in action: What predicts ungulate body size?

Quality (Nitrogen)? or Type (browse/grass)?

Table 1. Akaike's second-order information criterion (AIC $_{\!\!e})$ of the regression models of ungulate body mass with diet type (percentage grass intake) and diet quality (faecal %N and faecal %ADL).

Model (body mass-dependent)	K	AIC_c	Δ_i
All species			
% grass	3	55.50	7.03
%N	3	48.90	0.44
%ADL	3	53.65	5.18
% grass, %N	4	48-46	0.00
% grass, %ADL	4	55.04	6.57
%N, %ADL	4	50.78	2.31
% grass, %N, %ADL	5	49-96	1.50
Model average			

Journal of Animal Ecology 2007 Significance of diet type and diet quality for ecological diversity of African ungulates

DARYL CODRON*†, JULIA A. LEE-THORP*‡, MATT SPONHEIMER\$, JACQUI CODRON*, DARRYL DE RUITER¶ and JAMES S. BRINK†**

15/30

Caribou spring migrations

Remarkable temporal synchrony at a continental scale.

Could the synchrony be driven by global weather drivers?

Pacific Decadal Oscillation, Arctic Oscillation, North Atlantic Oscillation: determine whether the winter is wet & snowy or dry & cold.

Δ AIC Table 1: **Departure time**

... driven by LARGE climate oscillations.

Table 3. Model selection table for spring migration departure date against climate indices computed during the preceding summer ("sum": July–August), winter ("win": January–February), and spring ("spr": March and April).

		PDO			AO			NAO					
Rank	sum	win	spr	sum	win	spr	sum	win	spr	df	AIC_c	ΔAIC_c	Weight
1	-1.24		-2.03	-7.55		-4.17	3.08		5.25	9	676.4	0.00	0.272
2	-1.39		-2.24	-9.06		-3.83	3.23	1.10	4.72	10	677.4	0.93	0.171
3	-1.50		-1.99	-8.71	0.68	-4.09	3.31		4.87	10	678.2	1.78	0.112
4			-3.01	-6.77	-3.42	-3.14	2.18	4.31	4.86	10	678.4	2.02	0.099
5	-1.24	0.41	-2.40	-7.15		-4.27	2.91		5.34	10	678.8	2.35	0.084
6			-2.02	-5.46		-3.99	2.31		4.69	8	679.1	2.69	0.071
7	-0.99		-2.61	-8.50	-1.59	-3.52	2.90	2.67	4.85	11	679.3	2.85	0.065
8	-1.38	0.42	-2.61	-8.66		-3.93	3.06	1.10	4.80	11	679.7	3.33	0.052
9	-1.26	-1.69		-9.30		-3.61	3.71		4.69	9	680.2	3.82	0.040
10	-1.50	0.39	-2.35	-8.33	0.68	-4.19	3.15		4.95	11	680.6	4.20	0.033

Δ AIC Table 2: **Arrival time**

... completely independent of climate!

Table 4. Model selection table for spring migration arrival date.

		PDO			AO			NAO					
Rank	sum	win	spr	sum	win	spr	sum	win	spr	df	AIC_c	ΔAIC_c	Weight
1										3	707.03	0.00	0.21
2							1.01			4	707.98	0.95	0.13
3				1.66						4	708.48	1.44	0.10
4			-0.49							4	708.63	1.60	0.09
5						-0.57				4	708.67	1.64	0.09
6									-0.48	4	708.95	1.92	0.08
7		-0.19								4	709.11	2.08	0.07
8								0.21		4	709.15	2.12	0.07
9					-0.13					4	709.17	2.14	0.07
10	-0.11									4	709.17	2.14	0.07

Step IV: Generalized linear modeling

Normal Model

 $Y_i \sim \mathcal{N}ormal(\alpha_0 + \beta_1 X_i, \sigma)$

Models continuous data with a "normal-like" distribution.

Binomial model

$$Y_i \sim \mathcal{B}ernoulli\left(rac{\exp(lpha + eta X_i)}{1 + \exp(lpha + eta X_i)}
ight)$$

There's some probability of something happening that depends on the predictor X.

Bernoulli just means the data are all 0 or 1.

This models presence/absence, dead/alive, male/female other response variables with 2 possible outcomes.

What factors predict occurence of *Solea solea* larvae?

Sampled in the estuary of the Tejo river in Portugal

• Lots of environmental factors in data

depth	temp	salinity	transp	gravel	large_sand	fine_sand	mud	presence
3.0	20	30	15	3.74	13.15	11.93	71.18	0
2.6	18	29	15	1.94	4.99	5.43	87.63	0
2.6	19	30	15	2.88	8.98	16.85	71.29	1
2.1	20	29	15	11.06	11.96	21.95	55.03	0
3.2	20	30	15	9.87	28.60	19.49	42.04	0
3.5	20	32	7	32.45	7.39	9.43	50.72	0

21/30

Presence of *Solea solea* against **salinity**

glm(presen	ce ~ sal	inity, dat	a = sol	.ea, famil
	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	2.661	0.902	2.951	0.003
salinity	-0.130	0.035	-3.716	0.000

Clearly - *Solea solea* presence is very significantly *negatively* related to salinity.

Out of this model we can make predictions

23 / 30

Δ AIC analysis - and coefficients

	Model	k	logLik	AIC	dAIC
M9	salinity + gravel	3	-33.2	72.5	0.0
M2	salinity	2	-34.3	72.6	0.1
M 7	temp + salinity	3	-34.0	74.0	1.5
M5	depth + salinity	3	-34.1	74.3	1.8
M11	depth + temp + salinity	4	-33.9	75.8	3.3
M0	depth	2	-38.1	80.1	7.6
M4	depth + temp	3	-38.0	81.9	9.4
M6	depth + gravel	3	-38.0	82.0	9.5
M10	depth + temp + gravel	4	-37.8	83.7	11.2
M1	temp	2	-43.3	90.6	18.1
M3	gravel	2	-43.7	91.3	18.8
M8	temp + gravel	3	-43.3	92.6	20.1

Salinity clearly among the more important covariates (in the top 4 models).

This is how the caribou Resource Selection Function was selected

Model	spi	ring	sum	mer
	R ² _c	ΔΒΙϹ	R_c^2	ΔΒΙC
DEM + NDVI + PEM	0.07	0.0	0.23	0.0
DEM + PEM	0.07	12.1	0.2	169.7
PEM	0	45.0	0	676.0
PEM + NDVI	0.1	49.9	0.2	392.5
DEM + NDVI * PEM	0.09	76.8	0.26	117.1
NDVI * PEM	0.08	127.0	0.22	483.1
NDVI + DEM * PEM	0	170.0	0	274.0
DEM * PEM	0.1	184.0	0.2	425.9
DEM * NDVI	0.04	224.5	0.19	_
DEM + NDVI	0.02	277.2	0.15	311.5
DEM	0	284.0	0	588.0
1	0	358.9	0	1256.2
NDVI	0	366.0	0.05	897.1

THIS IS THE BEST MODEL!
We will talk about why later.

Takeaways:

- For both seasons all THREE variables are important as main effects.
- **Summer** model explains *much more* (23%) than **Spring** model (7%).

Note: "DEM" is second-order polynomial: DEM + DEM²

25 / 30

Poisson regression

$$Y_i \sim \mathcal{P}oisson\left(\lambda = \exp(lpha + eta X_i)
ight)$$

- We are **counting** something ... the data are between 0 and ∞
- λ is a **density**; **densities** vary across habitat types (covariate **X**).

26/30

Field flags

Did flag densities vary with region?

Approximate areas:

North:	110 m ²
South:	110 m ²
Perimeter:	130 m ²

27 / 30

Count data

Lots of 0's, some 1's, and just one 2 count.

##	F	Region		
##	Count	North	Perimeter	South
##	0	15	12	9
##	1	1	1	6
##	2	0	0	1

Fitting models

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-2.773	1.000	-2.773	0.006
AreaPerimeter	0.208	1.414	0.147	0.883
AreaSouth	2.079	1.061	1.961	0.050

The ${\bf intercept}$ here is "North", the $p\text{-}{\bf values}$ compare with North. So ${\bf South}$ has - borderline - significantly more

ΔAIC table

	df	AIC
Null.model	1	53.47
Region.model	3	49.15

Model that includes **Region** has lower AIC

Making predictions

Region	area	fit	se.fit	lambda.hat	lambda.low	lambda.high	d.hat	d.low	d.high	N.hat	N.low	N.high
South	82	-0.693	0.354	0.500	0.247	1.014	1.000	0.493	2.028	82.0	40.4	166.3
North	82	-2.773	1.000	0.063	0.008	0.462	0.125	0.017	0.924	10.2	1.4	75.8
Perimeter	196	-2.565	1.000	0.077	0.010	0.568	0.154	0.021	1.137	30.2	4.1	222.9

• note: **fit** and **se.fit** are in the log scale, so they need to be transformed via exp to density estimates.

Total estimate

$$\widehat{N} = 122.4 \, (95\% \, \mathrm{C.I.} : 71.4 - 173.4)$$

pretty darned good estimate!

29/30

Take-aways on (linear, statistical) modeling

- 1. Linear modeling separates patterns (the model) from "randomness" (unexplained variation).
- 2. We structure our models to have a **response variable** and one or more **predictors** or **covariates**.
- 3. Depending on the reponse variable, a different **family** is chosen:
 - if continuous and symmatric: Normal family
 - if two values (presence/absence, dead/alive): **Binomial** family
 - if count data: **Poisson** family.
- 4. An improtant task is **Model selection**, identifying which model is "best"
 - Best means "explains the most variation without overfitting"
 - Very common criterion is AIC.
- 5. Once a model is "selected", we can:
 - analyze the results by seeing the effect sizes (magnitude of coefficients, aka slopes) and directions (signs of coefficients)
 - make **inferential predictions** by "spreading" our model over a larger landscape.
- 6. Well over 90% of habitat modeling is done this way!

30/30