

Super fast primer on statistical modeling

Everything you need to know to do 95% of all wildlife modeling in less than an hour and FOUR (or FIVE) easy steps!!
I. Linear modeling
II. Multivariate modeling
III. Model selection
IV. Generalized linear modeling

- Poisson; Binomial
V. Prediction

Step I:Linear modeling

... is a very general method to quantifying relationships among variables.

aka LINEAR REGRESSION, except I really don't like that term, for a variety of reasons.

Linear Models

Deterministic:

$$
Y_{i}=a+b X_{i}
$$

a - intercept; b - slope

Probabilistic:

$$
Y_{i}=\alpha+\beta X_{i}+\epsilon_{i}
$$

α - intercept; β - slope; ϵ - randomness!:
$\epsilon_{i} \sim \mathcal{N}(0, \sigma)$

Fitting linear models is very easy in

Point Estimate

This command fits a model:

```
plot(Weight ~ Length, data = pups)
abline(my_model)
```

```
lm(Weight ~ Length, data = pups)
##
## Call:
## lm(formula = Weight ~ Length, data = pups)
##
## Coefficients:
## (Intercept) Length
## -49.1422 0.7535
```

So for each $1 \mathbf{c m}$ of length, add another 754 grams,
i.e. (\widehat $\{\backslash$ beta $\}=0.754$)

Some comments on linear models

$$
Y_{i} \sim \alpha+\beta X_{i}+\epsilon_{i}
$$

1. ϵ_{i} is unexplained variation or residual variance. It is often POORLY/WRONGLY referred to as "error". It is a random variable, NOT a parameter
2. A better, more sophisticated way to think of this model is not to focus on isolating the residual variance, but that the whole process is a random variable:

$$
Y_{i} \sim \mathcal{N}\left(\alpha+\beta X_{i}, \sigma\right)
$$

This is better because: (a) the three parameters (α, β, σ) are more clearly visible, (b) it can be "generalized". For example the Normal distribution can be a Bernoulli distribution (for binary data), or a Poisson distribution for count data, etc.
3. $\alpha+\beta X_{i}$ is the predictor, or the "modeled" portion. There can be any number of variables in the predictor and they can have different powers, so:

$$
Y_{i} \sim \mathcal{N}\left(\alpha+\beta X_{i}+\gamma Z_{i}+\delta X_{i}^{2}+\nu X_{i} Z_{i}, \sigma\right)
$$

is also a linear model.

Statistical inference

Statistical inference is the science / art of using data to estimate the parameters of a model. This is also called fitting a model.

Two related goals:

1. obtaining a point estimate and a confidence interval (precision) of the parameter estimate.
2. Assessing whether particular (combinations of) factors, i.e. models, provide any explanatory power.

This is (almost always) done using Maximum
Likelihood Estimation, i.e. an algorithm searches through possible values of the parameters that make the model MOST LIKELY (have the highest probability) given the data.

Statistical output

```
##
## Call:
## lm(formula = Weight ~ Length, data = pups %>% subset(Island ==
## "Raykoke"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.498 -1.718 0.023 1.764 7.276
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -49.14222 5.75796 -8.535 1.81e-13 ***
## Length 0.75345 0.05193 14.510 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.761 on 98 degrees of freedom
## Multiple R-squared: 0.6824, Adjusted R-squared: 0.6791
## F-statistic: 210.5 on 1 and 98 DF, p-value: < 2.2e-16
```

"Raykoke"))
Residuals:

-7.498	-1.718	0.023	1.764	7.276

Coefficients:

(Intercept)	-49.14222	5.75796	-8.535	$1.81 \mathrm{e}-13^{* * *}$
Length	0.75345	0.05193	14.510	$<2 e-16 * * *$

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
\# Residual standard error: 2.761 on 98 degrees of freedom
\#\# F-statistic: 210.5 on 1 and 98 DF, p-value: < 2.2e-16

1. Point estimates and confidence intervals

$$
\text { Intercept (} \alpha \text {): }-49.14 \pm 11.5
$$

Slope (β): 0.75 ± 0.104

2. Is the model a good one?

p-values are very very small, in particular for slope

Proportion of variance explained is high:

$$
R^{2}=0.68
$$

Models and Hypotheses

Every p-value is a Hypothesis test.

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathbf{t}\|)$
(Intercept)	-49.142	5.758	-8.535	0
Length	0.753	0.052	14.510	0

- First hypothesis test: H_{0} intercept $=0$
- Second hypothesis: H_{0} slope $=0$

Both null-hypotheses strongly rejected.

Linear modeling with a discrete factor

$$
Y_{i j k}=\alpha+\beta_{i} \operatorname{Sex}_{i j k}+\epsilon_{i j k}
$$

Im(Weight ~ Sex, data $=$ pups)

term	estimate	std.error	statistic	p.value
(Intercept)	30.151	0.317	95.119	$<2 \mathrm{e}-16$
SexMale	6.149	0.429	14.337	$<2 \mathrm{e}-16$

Intercept here means mean female weight.
Note - this is very similar to a t-test comparing two means (baby stats).

Linear modeling with multiple factors

Very easy to extend this to more complicated models!

$$
\begin{aligned}
& Y_{i j k}=\alpha+\beta_{i} \text { Island }_{i j k}+\gamma_{j} \operatorname{Sex}_{i j k}+\epsilon_{i j k} \\
& \text { } \text { lm } \text { Weight } \sim \text { Island }+ \text { Sex, data }=\text { pups })
\end{aligned}
$$

term	estimate	std.error	statistic	p.value
(Intercept)	31.04	0.54	57.62	$<1 \mathrm{e}-16$
IslandChirpoev	-2.23	0.67	-3.34	0.001
IslandLovushki	-0.84	0.67	-1.26	0.21
IslandRaykoke	0.14	0.67	0.21	0.83
IslandSrednova	-1.50	0.67	-2.24	0.03
SexMale	6.14	0.42	14.47	$1 \mathrm{e}-16$

Analysis of Variance (ANOVA)

Is a technique for seeing which effect in a model is significant. Each row tests a hypothesis that the effect coefficients are non-zero.

In this model, we include an interaction, asking: "Do different Islands have different patterns among Sexes? (and vice versa)"
lm(Weight ~ Island * Sex, data = pups)

Interpretation:

- Differences between SEXES very significant (very very small p-value)
- Differences among ISLANDS very significant (small p-value)
- SEX differences among ISLANDS consistent (large interaction p-value)
- ISLANDS differences between SEXES consistent (large interaction p-value)

Combining continuous and categorical variables

Exploratory plot

It looks like, maybe, there are different body proportions for MALES and FEMALES.

Step III: Model Selection

ANOVA is helpful for "nested" models, where each one is a subset of another more complex one. For comparing a set of competing, non-nested models, we use .

Δ AIC table

	Model	\mathbf{k}	R2	logLik	AIC	dAIC
M0	1	1	0.000	-1569.5	3143.1	835.8
M1	Island	5	0.028	-1562.5	3137.0	829.7
M2	Sex	2	0.293	-1483.2	2972.4	665.1
M3	Length	2	0.779	-1193.4	2392.8	85.5
M4	Length + Sex	3	0.795	-1174.5	2357.0	49.7
M6	Length * Sex	4	0.803	-1164.5	2339.0	31.7
M5	Length + Sex + Island	7	0.811	-1155.0	2325.9	18.6
M7	Length * Sex + Island	$\mathbf{8}$	$\mathbf{0 . 8 1 8}$	$\mathbf{- 1 1 4 4 . 6}$	$\mathbf{2 3 0 7 . 3}$	$\mathbf{0 . 0}$
M8	Length * Sex * Island	20	0.824	-1137.1	2316.1	8.8

ANOVA table confirms our suspicion!

Highly significant interaction term.

13 / 30

Degrees of freedom k :

- Number of estimated parameters. Measure of complexity.

Coefficient of determination $\mathbf{R}^{\mathbf{2}}$:

- Percent variation explained. It ALWAYS increases the more complex the model.
- Is is always zero for the NULL model.
\log-likelihood $\log (\mathcal{L})$:
- Total probability score of model. It ALWAYS increases the more complex the model.

Akaike Information Criterion:

- $A I C=-2 \log (\mathcal{L})+2 k$
- A measure of model quality.
- Smaller is better It starts getting bigger if the model complexity gets too high.
- The lowest AIC value is the "best" model.
- (but within $2 \Delta A I C$ is pretty much equivalent to best)

AIC in action: What predicts ungulate body size?

Quality (Nitrogen)? or Type (browse/grass)?

Table 1. Akaike's second-order information criterion $\left(\mathrm{AIC}_{\mathrm{c}}\right)$ of the regression models of ungulate body mass with diet type
(percentage grass intake) and diet quality (faecal $\% \mathrm{~N}$ and faecal $\% \mathrm{ADL}$).

Model (body mass-dependent)	K	$\mathrm{AIC}_{\mathrm{c}}$	Δ_{i}
All species			
\% grass	3	55.50	7.03
\%N	3	48.90	$0 \cdot 44$
\%ADL	3	53.65	$5 \cdot 18$
\% grass, \%N	4	48.46	0.00
\% grass, \%ADL	4	55.04	6.57
\%N, \%ADL	4	50.78	2.31
\% grass, \%N, \%ADL	5	49.96	1.50
Model average			

Journal of Animal
Ecology 2007 76, 526-537

Significance of diet type and diet quality for ecological diversity of African ungulates

DARYL CODRON* \dagger, JULIA A. LEE-THORP* \downarrow, MATT SPONHEIMER§,
JACQUI CODRON*, DARRYL DE RUITER \dagger and JAMES S. BRINK $\dagger^{* *}$
15 / 30

Caribou spring migrations

Remarkable temporal synchrony at a continental scale.

Could the synchrony be driven by global weather drivers?

Pacific Decadal Oscillation, Arctic Oscillation, North Atlantic Oscillation: determine whether the winter is wet \& snowy or dry \& cold.

Δ AIC Table 1: Departure time

... driven by LARGE climate oscillations.

Table 3. Model selection table for spring migration departure date against climate indices computed during the preceding summer ("sum": July-August), winter ("win": January-February), and spring ("spr": March and April).

Rank	PDO			AO			NAO			df	$\mathrm{AIC}_{\mathrm{c}}$	$\Delta \mathrm{AIC}_{c}$	Weight
	sum	win	spr	sum	win	spr	sum	win	spr				
1	-1.24		-2.03	-7.55		-4.17	3.08		5.25	9	676.4	0.00	0.272
2	-1.39		-2.24	-9.06		-3.83	3.23	1.10	4.72	10	677.4	0.93	0.171
3	-1.50		-1.99	-8.71	0.68	-4.09	3.31		4.87	10	678.2	1.78	0.112
4			-3.01	-6.77	-3.42	-3.14	2.18	4.31	4.86	10	678.4	2.02	0.099
5	-1.24	0.41	-2.40	-7.15		-4.27	2.91		5.34	10	678.8	2.35	0.084
6			-2.02	-5.46		-3.99	2.31		4.69	8	679.1	2.69	0.071
7	-0.99		-2.61	-8.50	-1.59	-3.52	2.90	2.67	4.85	11	679.3	2.85	0.065
8	-1.38	0.42	-2.61	-8.66		-3.93	3.06	1.10	4.80	11	679.7	3.33	0.052
9	-1.26	-1.69		-9.30		-3.61	3.71		4.69	9	680.2	3.82	0.040
10	-1.50	0.39	-2.35	-8.33	0.68	-4.19	3.15		4.95	11	680.6	4.20	0.033

30

Δ AIC Table 2: Arrival time

... completely independent of climate!

Table 4. Model selection table for spring migration arrival date.

Rank	PDO			AO			NAO			df	$\mathrm{AIC}_{\mathrm{c}}$	$\Delta \mathrm{AIC}_{\mathrm{c}}$	Weight
	sum	win	spr	sum	win	spr	sum	win	spr				
1										3	707.03	0.00	0.21
2							1.01			4	707.98	0.95	0.13
3				1.66						4	708.48	1.44	0.10
4			-0.49							4	708.63	1.60	0.09
5						-0.57				4	708.67	1.64	0.09
6									-0.48	4	708.95	1.92	0.08
7		-0.19								4	709.11	2.08	0.07
8								0.21		4	709.15	2.12	0.07
9					-0.13					4	709.17	2.14	0.07
10	-0.11									4	709.17	2.14	0.07

Step IV: Generalizedlinear modeling

Normal Model
$Y_{i} \sim \mathcal{N o r m a l}\left(\alpha_{0}+\beta_{1} X_{i}, \sigma\right)$
Models continuous data with a "normal-like" distribution.

Binomial model

$$
Y_{i} \sim \mathcal{B e r n o u l l i}\left(\frac{\exp \left(\alpha+\beta X_{i}\right)}{1+\exp \left(\alpha+\beta X_{i}\right)}\right)
$$

There's some probability of something happening that depends on the predictor X.

Bernoulli just means the data are all 0 or 1.

This models presence/absence, dead/alive, male/female other response variables with 2 possible outcomes.

What factors predict occurence of Solea solea larvae?

Sampled in the estuary of the Tejo river in Portugal

- Lots of environmental factors in data

depth	temp	salinity	transp	gravel	large_sand	fine_sand	mud	presence
3.0	20	30	15	3.74	13.15	11.93	71.18	$\mathbf{0}$
2.6	18	29	15	1.94	4.99	5.43	87.63	$\mathbf{0}$
2.6	19	30	15	2.88	8.98	16.85	71.29	$\mathbf{1}$
2.1	20	29	15	11.06	11.96	21.95	55.03	$\mathbf{0}$
3.2	20	30	15	9.87	28.60	19.49	42.04	$\mathbf{0}$
3.5	20	32	7	32.45	7.39	9.43	50.72	$\mathbf{0}$

Presence of Solea solea against salinity

glm(presence ~ salinity, data = solea, famil

	Estimate	Std. Error	z value	$\operatorname{Pr}(>\|\mathbf{z}\|)$
(Intercept)	2.661	0.902	2.951	0.003
salinity	-0.130	0.035	-3.716	0.000

Clearly - Solea solea presence is very significantly negatively related to salinity.

Out of this model we can make predictions

23 / 30

$\Delta \mathrm{AlC}$ analysis - and coefficients

	Model	k	logLik	AIC	dAIC
M9	salinity + gravel	$\mathbf{3}$	$-\mathbf{- 3 3 . 2}$	72.5	$\mathbf{0 . 0}$
M2	salinity	$\mathbf{2}$	$-\mathbf{- 3 4 . 3}$	72.6	$\mathbf{0 . 1}$
M7	temp + salinity	$\mathbf{3}$	$-\mathbf{- 3 4 . 0}$	74.0	$\mathbf{1 . 5}$
M5	depth + salinity	$\mathbf{3}$	$-\mathbf{- 3 4 . 1}$	74.3	$\mathbf{1 . 8}$
M11	depth + temp + salinity	4	-33.9	75.8	3.3
M0	depth	2	-38.1	80.1	7.6
M4	depth + temp	3	-38.0	81.9	9.4
M6	depth + gravel	3	-38.0	82.0	9.5
M10	depth + temp + gravel	4	-37.8	83.7	11.2
M1	temp	2	-43.3	90.6	18.1
M3	gravel	2	-43.7	91.3	18.8
M8	temp + gravel	3	-43.3	92.6	20.1

Salinity clearly among the more important covariates (in the top 4 models).

This is how the caribou Resource Selection Function was selected

Model	spring		summer	
	$\mathbf{R}^{2}{ }_{c}$	Δ BIC	$\mathbf{R}^{2}{ }_{c}$	$\Delta \mathrm{BIIC}$
DEM + NDVI + PEM	0.07	0.0	0.23	0.0
DEM + PEM	0.07	12.1	0.2	169.7
PEM	0	45.0	0	676.0
PEM + NDVI	0.1	49.9	0.2	392.5
DEM + NDVI * PEM	0.09	76.8	0.26	117.1
NDVI * PEM	0.08	127.0	0.22	483.1
NDVI + DEM * PEM	0	170.0	0	274.0
DEM * PEM	0.1	184.0	0.2	425.9
DEM * NDVI	0.04	224.5	0.19	-19
DEM + NDVI	0.02	277.2	0.15	311.5
DEM	0	284.0	0	588.0
1	0	358.9	0	1256.2
NDVI	0	366.0	0.05	897.1

THIS IS THE BEST MODEL!
 We will talk about why later.

Takeaways:

- For both seasons all THREE variables are important as main effects.
- Summer model explains much more (23\%) than Spring model (7\%).

Note: "DEM" is second-order polynomial: DEM + DEM ${ }^{2}$

Poisson regression

$$
Y_{i} \sim \mathcal{P o i s s o n}\left(\lambda=\exp \left(\alpha+\beta X_{i}\right)\right)
$$

- We are counting something ... the data are between 0 and ∞
- λ is a density; densities vary across habitat types (covariate \mathbf{X}).

Field flags

Did flag densities vary with region?

Approximate areas:

North:	$110 \mathrm{~m}^{2}$
South:	$110 \mathrm{~m}^{2}$
Perimeter:	$130 \mathrm{~m}^{2}$

27 / 30

Count data

\#\#		Region		
\#\#	Count	North	Perimeter	South
\#\#	0	15	12	9
\#\#	1	1	1	6
\#\#	2	\bigcirc	\bigcirc	1

Fitting models

	Estimate	Std. Error	\mathbf{z} value	$\operatorname{Pr}(>\|\mathbf{z}\|)$
(Intercept)	-2.773	1.000	-2.773	0.006
AreaPerimeter	0.208	1.414	0.147	0.883
AreaSouth	2.079	1.061	1.961	0.050

The intercept here is "North", the p-values compare with North. So South has - borderline - significantly more
$\Delta A I C$ table

	df	AIC
Null.model	1	53.47
Region.model	3	49.15

Model that includes Region has lower AIC

Making predictions

| Region | area | fit | se.fit | lambda.hat | lambda.low | lambda.high | d.hat | d.low | d.high | N.hat | N.low | N.high |
| :--- | ---: |
| South | 82 | -0.693 | 0.354 | 0.500 | 0.247 | 1.014 | 1.000 | 0.493 | 2.028 | 82.0 | 40.4 | 166.3 |
| North | 82 | -2.773 | 1.000 | 0.063 | 0.008 | 0.462 | 0.125 | 0.017 | 0.924 | 10.2 | 1.4 | 75.8 |
| Perimeter | 196 | -2.565 | 1.000 | 0.077 | 0.010 | 0.568 | 0.154 | 0.021 | 1.137 | 30.2 | 4.1 | 222.9 |

- note: fit and se.fit are in the log scale, so they need to be transformed via \exp to density estimates.

Total estimate

$$
\widehat{N}=122.4(95 \% \text { C.I. : } 71.4-173.4)
$$

pretty darned good estimate!

Take-aways on (linear, statistical) modeling

1. Linear modeling separates patterns (the model) from "randomness" (unexplained variation).
2. We structure our models to have a response variable and one or more predictors or covariates.
3. Depending on the reponse variable, a different family is chosen:

- if continuous and symmatric: Normal family
- if two values (presence/absence, dead/alive): Binomial family
- if count data: Poisson family.

4. An improtant task is Model selection, identifying which model is "best"

- Best means "explains the most variation without overfitting"
- Very common criterion is AIC.

5. Once a model is "selected", we can:

- analyze the results by seeing the effect sizes (magnitude of coefficients, aka slopes) and directions (signs of coefficients)
- make inferential predictions by "spreading" our model over a larger landscape.

6. Well over $\mathbf{9 0 \%}$ of habitat modeling is done this way!
