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Super fast primer on statistical modeling

Everything you need to know to do 95% of all wildlife modeling in less than an hour and FOUR (or FIVE) easy
steps!!

I. Linear modeling

II. Multivariate modeling

ITI. Model selection

IV. Generalized linear modeling
e Poisson; Binomial

V. Prediction
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Step [: Linear modeling

... 1s a very general method to quantifying relationships among variables.

Steller sea lion size ﬂ‘“ \
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aka LINEAR REGRESSION, except I really don't like that term, for a variety of reasons. 3/30

Linear Models

Deterministic: Probabilistic:
Y =a+bX; Yi=a+B8X;t+e
a - intercept; b - slope « - intercept; (3 - slope; € - randomness!:
ei ~ N(0,0)
a=1; b=1/2 a=1;B=1/2;0=1
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Fitting linear models is very easy in R !

Point Estimate

This command fits a model:

plot(Weight ~ Length, data = pups)
abline(my_model)

Im(Weight ~ Length, data = pups)

##
#H#
##
#H
##
#
##

Call:
Im(formula = Weight ~ Length, data = pups)

Coefficients:
(Intercept) Length
-49.1422 0.7535

So for each 1 cm of length, add another 754 grams,
i.e. (\widehat{\beta} = 0.754)

Some comments on linear models

Y ~a+ BX; + €

1. €¢; is unexplained variation or residual variance. It is often POORLY/WRONGLY referred to as "error". It

is a random variable, NOT a parameter

2. A better, more sophisticated way to think of this model is not to focus on isolating the residual variance,

but that the whole process is a random variable:
1Q1\MAf(O!+*B)Q,Oj

This is better because: (a) the three parameters ( «, 3, o ) are more clearly visible, (b) it can be
"generalized". For example the Normal distribution can be a Bernoulli distribution (for binary data), or
a Poisson distribution for count data, etc.

. a + BX; is the predictor, or the "modeled" portion. There can be any number of variables in the

predictor and they can have different powers, so:
l@’”.A[(O!+‘ﬁ)(i+-ﬁéz +—5)(?'+'V}K22%,U)

is also a linear model.
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Statistical inference

Statistical inference is the science / art of using
data to estimate the parameters of a model. This
is also called fitting a model.

Two related goals:

1. obtaining a point estimate and a confidence
interval (precision) of the parameter estimate.

2. Assessing whether particular (combinations of)
factors, i.e. models, provide any explanatory
power.

This is (almost always) done using Maximum
Likelihood Estimation, i.e. an algorithm searches
through possible values of the parameters that
make the model MOST LIKELY (have the highest
probability) given the data.

Statistical output

##

## Call:

## Ilm(formula = Weight ~ Length, data = pups %>% subset(Island ==
#it "Raykoke"))

##

## Residuals:

## Min 1Q Median 3Q Max

## -7.498 -1.718 ©0.023 1.764 7.276

##

## Coefficients:

#it Estimate Std. Error t value Pr(>|t|)

## (Intercept) -49.14222 5.75796 -8.535 1.81e-13 ***

## Length 0.75345 0.05193 14.510 < 2e-16 ***

## ---

## Signif. codes: © '***' 9.001 '**' 9.01 '*' ©.05 '.' 0.1 ' ' 1
##

## Residual standard error: 2.761 on 98 degrees of freedom

## Multiple R-squared: 0.6824, Adjusted R-squared: 0.6791

## F-statistic: 210.5 on 1 and 98 DF, p-value: < 2.2e-16

1. Point estimates and confidence
intervals

Intercept (o ): —49.14 +11.5
Slope (3): 0.75 +0.104

2. s the model a good one?

p-values are very very small, in
particular for slope

Proportion of variance explained is high:

R?2 =0.68

7130
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Models and Hypotheses

Every p-value is a Hypothesis test.

(Intercept)  -49.142

Length 0.753

Estimate Std. Error tvalue Pr(>|t|)

5.758 -8.535 0

0.052 14.510 0

« First hypothesis test: Hj intercept = 0
« Second hypothesis: H slope =0

Both null-hypotheses strongly rejected.

Linear modeling with a discrete factor

50

40 1

Weight

20 1

Yije = o+ Bi Sexiji + €ijk

Pup weight against sex

Female Male
Sex

Im(Weight ~ Sex, data

= pups)

term estimate std.error statistic p.value
(Intercept) 30.151 0.317 95.119 <Ze-16
SexMale 6.149 0.429  14.337 <2e-16

Intercept here means mean female weight.

Note - this is very similar to a t-test comparing two

means (baby stats).
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Linear modeling with multiple factors

Very easy to extend this to more complicated models!

» Pup weight against sex and island Y}jk =+ Bz Islandijk + Y; SeXijk» + €ijk
lm(Weight ~ Island + Sex, data pups)
401 term estimate std.error statistic p.value
H (Intercept) 31.04 0.54 57.62 <le-16
= IslandChirpoev -2.23 0.67 -3.34 0.001
% IslandLovushki -0.84 0.67 -1.26 0.21
= 30+ IslandRaykoke 0.14 0.67 021 083
IslandSrednova -1.50 0.67 -2.24 0.03
SexMale 6.14 0.42 14.47 le-16
204 Sex
Female EI Male

Antsiferov Chirpoev Lovushki Raykoke Srednova
Island

Analysis of Variance (ANOVA)

Is a technique for seeing which effect in a model is significant. Each row tests a hypothesis that the effect
coefficients are non-zero.

In this model, we include an interaction, asking: "Do different .
Islands have different patterns among Sexes? (and vice versa)" |ﬂt€fpf€t3tl0ﬂ:

Im(Weight ~ Island * Sex, data = pups .
(Weig pups) « Differences between SEXES very

significant (very very small p-value)

Analysis of Variance Table « Differences among ISLANDS very
significant (small p-value)
Response: Weight » SEX differences among ISLANDS
Df Sum Sq Mean Sq F value  Pr(>F) consistent (large interaction p-value)
Island 4  443.3 110.8 5.0114 0.0005763 *** o ISLANDS differences between SEXES
Sex 1 4623.9 4623.9 209.0758 < 2.2e-16 ***

consistent (large interaction p-value)
Island:Sex 4  71.4  17.9 ©0.8075 0.5207439

Residuals 488 10792.6 22.1

Signif. codes: @ '***' 9,001 '**' @9.01 '*' ©.05 '.' ©0.1 ' '

Non-significant interaction term
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Combining continuous and categorical variables

Exploratory plot

Pup weight against sex and length
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Length

It looks like, maybe, there are different body
proportions for MALES and FEMALES.

Step lll: Model Selection

ANOVA is helpful for "nested" models, where each
one is a subset of another more complex one. For
comparing a set of competing,non-nested models,
we use .

ANAIC table

Model R2 logLik AIC dAIC
MO 1 0.000 -1569.5 3143.1 835.8
M1 Island 0.028 -1562.5 3137.0 829.7
M2 Sex 0.293 -1483.2 2972.4 665.1
M3 Length 0.779 -1193.4 2392.8 85.5

M4 Length + Sex
M6 Length * Sex

0.795 -1174.5 2357.0 49.7
0.803 -1164.5 2339.0 31.7
M5 Length + Sex + Island 0.811 -1155.0 2325.9 18.6
M7 Length * Sex + Island 0.818 -1144.6 2307.3 0.0
M8 Length * Sex *Island 20 0.824 -1137.1 2316.1 8.8

0 g kW NN =R

ANOVA table confirms our suspicion!

Analysis of Variance Table

Response: Weight

Df Sum Sq Mean Sq F value Pr(>F)
Length 1 12413.8 12413.8 1957.969 < 2.2e-16 ***
Sex 1 257.3 257.3 40.582 4.321e-10 ***
Length:Sex 1 128.1 128.1 20.208 8.662e-06 ***
Residuals 494 3132.0 6.3

Signif. codes: @ '***' @9.001 '**' ©0.01 '*' ©0.05 '.' 0.1

Highly significant interaction term.

13/30

Degrees of freedom k:

» Number of estimated parameters. Measure of
complexity.

Coefficient of determination R2:

» Percent variation explained. It ALWAYS
increases the more complex the model.
« Isis always zero for the NULL model.

log-likelihood log(L):

» Total probability score of model. It ALWAYS
increases the more complex the model.

Akaike Information Criterion:

o« AIC = —2log(L) +2k

» A measure of model quality.

» Smaller is better It starts getting bigger if the
model complexity gets too high.

o The lowest AIC value is the "best" model.

« (but within 2 AAIC is pretty much equivalent
to best)
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AlCin action: What predicts ungulate body size?

Quality (Nitrogen)? or Type (browse/grass)?

Table 1. Akaike’s second-order information criterion (AIC,) of the
regression models of ungulate body mass with diet

(percentage grass intake) and diet quality (faccal %N and faecal %ADL).

Model (body

mass-dependent) K AIC, A

All species
% grass 3 55-50 7-03
%N 3 48-90 0-44
Y%ADL 3 53-65 5-18
Yo grass, 7oN 4 48-46 0-00
% grass, YoADL 4 55-04 6-57
%N, %ADL Bl 50-78 2-31
% grass, %N, %ADL 5 49-96 1-50
Model average

e Significance of diet type and diet quality for ecological

76.526-537 diversity of African ungulates

DARYL CODRON#*#, JULIA A. LEE-THORP*}, MATT SPONHEIMERS,
JACQUI CODRON*, DARRYL DE RUITERY and JAMES S. BRINK{**

Caribou spring migrations

Remarkable temporal synchrony at a
continental scale.
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Could the synchrony be driven by global weather drivers?

Pacific Decadal Oscillation, Arctic Oscillation, North Atlantic Oscillation:
determine whether the winter is wet & snowy or dry & cold.

. esa FCOSPHERE
L By . . - .
Tactical departures and strategic arrivals: Divergent effects of
oo climate and weather on caribou spring migrations
a2 Eviezer Gurarte, ™+ Mark Hesatewsire,” Kyie Jowy,” Awvcis P Keiy* Jan Apasczewsia,”
Saran C. Davison, ™ Tracy Davison,* Axne Gua,” Miciaer . Sunok,
o Wriiam F. Facan,! asp Naraue Boeran'?
08
‘Warm Phase PDO
Megative phase Pasitive phase

,
‘ .‘ “

Winter 2005-10 3 Winter 1988-89

3 R B ’
4 ® Westem Arctic @ Porcupine ® Cape Bathurst @ Biuencse West @ Bluenose East ~ Bathurst ® Beverly / Ahiak

Diffarence from averags pressurs (millibars)

" 0 1"

AAIC Table 1: Departure time

... driven by LARGE climate oscillations.

Table 3. Model selection table for spring migration departure date against climate indices computed during the

: preceding summer (“sum”: July-August), winter (“win”: January—February), and spring (“spr”: March and
- April).
o0 T
2 FDO AO NAO
o Rank sum win spr sum win spr sum  win spr df  AIC. AAIC.  Weight
"’ 1 s ) 0.00
I 2 ~1.39 —224 9.6 ~383 323 110 472 10 6774 093 0171
3 —-1.50 -1.99 —8.71 0.68 —4.09 3.31 4.87 10 678.2 1.78 0.112
4 —3.01 —6.77 —3.42 —3.14 218 431 4.86 10 678.4 2,02 0.099
5 -1.24 0.41 -2.40 -7.15 -4.27 291 5.34 10 678.8 2.35 0.084
AO / NAO 6 -202  -546 —399 231 469 8 6791 269 0071
Negative phase Positive phase 7 -0.99 -2.61 —8.50 -1.59 -3.52 290 267 485 11 679.3 2.85 0.065
. 8 —1.38 042 —2.61 —8.66 -3.93 3.06 110 480 11 679.7 3.33 0.052
Y " 9 -1.26 -1.69 -9.30 -3.61 371 4.69 9 680.2 3.82 0.040
‘ t & —-1.50 0.39 —-2.35 —8.33 0.68 —4.19 3.15 4.95 11 680.6 4.20 0.033

B
(=1

Winter 2005-10 Winter 1988-89
Diffarence from averags pressurs (millibars)
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AAIC Table 2: Arrival time

... completely independent of climate!

Table 4. Model selection table for spring migration arrival date.

PDO AO NAO

Rank sum win spr sum win spr sum win spr df AIC, AAIC,  Weight

o 1 707.03
o 2 1.01 4 707.98 0.95 0.13
3 1.66 4 708.48 144 0.10
Warm Fhase POO 4 —-0.49 4 708.63 1.60 0.09
5 -0.57 4 708.67 1.64 0.09
6 —-0.48 4 708.95 1.92 0.08
7 -0.19 4 709.11 2.08 0.07
AO / NAO 8 0.21 4 709.15 212 0.07

Megative phase Positive phase

9 -0.13 4 709.17 2.14 0.07
10 -0.11 4 709.17 2.14 0.07

"‘ :

Winter 2009-10 Winter 1988-89
Diffarsnce from averags pressurs (millibars)

" 0 1"

Ld %“W

Step IV: Generalizedlinear modeling ~ Binomial model

[ exp(a+ BX;)
Normal Model ¥ ~ Bernoulli ( 1+ expla + BX) )

There's some probability of something happening that depends on the
Y; ~ Normal(ag + f1Xi,0) predictor X.

Bernoulli just means the data are all 0 or 1.
Models continuous data with a "normal-like" distribution. )

a=-3;p=1/2

a=1;p=1/2;0=1

1.0

probability
00 02 04 06 08

0 5 10 15

0 5 10 15 .
covariate (X)

covariate (X)

This models presence/absence, dead/alive, male/female other response
variables with 2 possible outcomes.
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What factors predict occurence of Solea solealarvae?

Sampled in the estuary of the Tejo river in Portugal

e Lots of environmental factors in data

depth temp salinity transp gravel large sand fine sand mud presence

3.0 20 30 15 3.74 13.15 11.93 71.18 0
2.6 18 29 15 1.94 4.99 5.43 87.63 0
2.6 19 30 15 2.88 8.98 16.85 71.29 1
2.1 20 29 15 11.06 11.96 21.95 55.03 0
3.2 20 30 15 9.87 28.60 19.49 42.04 0
3.5 20 32 7 3245 7.39 9.43 50.72 0
21/30
[] [ ] [ ]
Presence of Solea soleaagainst salinity
Presence of Solea vs. salinity glm(presence ~ salinity, data = solea, famil

< >

: Estimate Std. Error zvalue Pr(>|z|)

RUET RSt ] (Intercept) 2.661 0.902 2.951  0.003
; . 1e . salinity -0.130 0.035 -3.716  0.000

Clearly - Solea solea presence is very significantly
negatively related to salinity.

FALSE- . LS

10 20 30
salinity
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Out of this model we can make predictions

oo I — —— - i
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AAIC analysis - and coefficients

Model
M9 salinity + gravel
M2 salinity
M7 temp + salinity
M5 depth + salinity

depth + temp +
salinity

MO depth
M4 depth + temp

M11

M6 depth + gravel

M10 depth + temp + gravel
M1 temp

M3 gravel

M8 temp + gravel

k logLik AIC dAIC

3

2
3
3

'S

W N N W w N

-33.2
-34.3
-34.0
-34.1

-33.9

-38.1
-38.0
-38.0
-37.8
-43.3
-43.7
-43.3

72.5
72.6
74.0
74.3

75.8

80.1
81.9
82.0
83.7
90.6
91.3
92.6

0.0
0.1
1.5
1.8

3.3

7.6
9.4
9.5
11.2
18.1
18.8
20.1
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Salinity clearly among the more important
covariates (in the top 4 models).

temp

salinity

term

gravel q

depth 1

coefficients
sign
negative
. . non-significant
@
@
—0.I25 0.|00 0.I25 0.I50
estimate
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This is how the caribou Resource Selection Function was selected

Model spring summer
2 2
R ABIC | RS ABIC THIS IS THE BEST MODEL!
DEM + NDVI+ PEM | 0.07 0.0 0.23 0.0 — .
We will talk about why later.
DEM + PEM 0.07 12.1f 0.2 169.7
PEM 0 45.0 0 676.0
PEM + NDVI 0.1  49.9, 0.2 3925 Takeaways:
DEM + NDVI * PEM | 0.09 76.8| 0.26 117.1
NDVI * PEM 0.08 127.0f 0.22 4831 * For both seasons all THREE variables
NDVI + DEM * PEM 0 1700 0 274.0 are important as main effects.
DEM * PEM 01 1840 02 4259 * Summer model explains much more
DEM * NDVI 0.04 2245 0.19 . (23%) than Spring model (7%).
DEM + NDVI 0.02 277.2) 0.15 3115
DEM 0 284.0 0 588.0
1 0 358.9 0 1256.2
NDVI 0 366.00 0.05 8971 Note: “DEM” is second-order polynomial: DEM + DEM?
Poisson regression
R Y; ~ Poisson (A = exp(a + X))
’ ° ’ % ’ sﬁ « We are counting something ... the data are between 0 and co
: » \is a density; densities vary across habitat types (covariate X).
J 1 0
6 % |8e 4 .9 ¢ .
P o ° ®
.\ ° @
3e° ° 9. 4
Jsete ot o
CENS LA
. : ,
Count O Open Forest
100 e 13 & 10 °° B Mixed Forest
o6 [¢eo | oo ® Coniferous Forest
.:. .'. o ® 4
9° £l o5 g
o.. .'o L4 o ; ° L
6 v, °g 1.2 | =
° e : ’ o @ .‘ '.‘ ‘ B
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Field flags

Did flag densities vary with
region?

Approximate areas:

North: 110 m?
South: 110 m?2

Perimeter: 130 m?2

Count data

Lots of 0's, some 1's, and just one 2 count.

#it Region

## Count North Perimeter South

#Hi 0 15 12 9

## 1 1 1 6

#Hi 2 0 0 1
~ _
= O North
o~ B Perimeter
~ O South
-
o J

counts
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Fitting models

Estimate Std. Error zvalue Pr(>|z|)

(Intercept) -2.773 1.000 -2.773 0.006
AreaPerimeter 0.208 1.414 0.147 0.883
AreaSouth 2.079 1.061 1.961 0.050

The intercept here is "North", the p-values compare with North. So South
has - borderline - significantly more

AAIC table

df AIC
Null.model 1 53.47
Region.model 3 49.15

Model that includes Region has lower AIC
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Making predictions

Region  area fit se.fit lambda.hat lambda.low lambda.high d.hat d.low d.high N.hat N.low N.high

South 82 -0.693 0.354 0.500 0.247 1.014 1.000 0.493 2.028 82.0 404 166.3
North 82 -2.773 1.000 0.063 0.008 0.462 0.125 0.017 0.924 10.2 1.4 75.8
Perimeter 196 -2.565 1.000 0.077 0.010 0.568 0.154 0.021 1.137 30.2 41 2229

 note: fit and se.fit are in the log scale, so they need to be transformed via exp to density estimates.

Total estimate

—

N =122.4(95%C.1L : 71.4 — 173.4)

pretty darned good estimate!
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Take-aways on (linear, statistical) modeling

1. Linear modeling separates patterns (the model) from "randomness" (unexplained variation).
2. We structure our models to have a response variable and one or more predictors or covariates.
3. Depending on the reponse variable, a different family is chosen:

o if continuous and symmatric: Normal family
o if two values (presence/absence, dead/alive): Binomial family
o if count data: Poisson family.

4. An improtant task is Model selection, identifying which model is "best"

o Best means "explains the most variation without overfitting”
o Very common criterion is AIC.

5. Once a model is "selected", we can:

o analyze the results by seeing the effect sizes (magnitude of coefficients, aka slopes) and directions
(signs of coefficients)
o make inferential predictions by "spreading" our model over a larger landscape.

6. Well over 90% of habitat modeling is done this way!

TN =



