

Terrific seminar!

Adaptive Peaks Fall 2022 Seminar Series

Illick 5 @ 3:45 PM

Rewilding the Ruling Reptiles of Galapagos

Dr. James Gibbs Seminar Thursday 10/20/2022

Sponsored by the Department of Environmental Biology

Limits to growth

- space
- resources
- food
- habitat

Important additional factor: Species Interactions

Competitive Exclusion Principle

Two species occupying the same niche can NOT coexist

In *theory* Fox (*Vulpes vulpes*) and Coyote (*Canis latrans*) can't co-exist across southern Minnesota prairie / farmland

Except they often do! (via niche partitioning)

PLOS ONE

RESEARCH ARTICLE Coexistence of coyotes (*Canis latrans*) and red foxes (*Vulpes vulpes*) in an urban landscape Marcus A. Mueller*, David Drake, Maximilian L. Allen

Madison, Wisconsin

Predator-prey dynamics

Based (mainly) on fur sales from the Hudson Bay Company in Canada over 100 years. Roughly a 9 to 11 year, fairly synchronous, cycle.

Theory suggests the **predators** and **prey** cycle

... but it turns out that is *probably* not the case.

Learn more in EFB 370: Population Ecology and Management

Equations and models

Exponential model

$$rac{dN}{dt} = rN$$

Basic assumption: Growth rate is proportional to population size

Equations and models

Exponential model

$$rac{dN}{dt} = rN$$

Logistic model

$$rac{dN}{dt} = rN\left(1-rac{N}{K}
ight)$$

Assumption growth rate goes to 0 at (N=K)

Competition model

contains carrying capacities AND interactions

9 / 23

Predator-Prey Model

$$rac{dP}{dt} = -qP + \gamma VP$$
 $rac{dV}{dt} = rV - \sigma VP$

To learn more ...

Drilling into structure of Birth and Death

$$N_t = N_{t-1} + B_t - D_t$$

- **B** = Births
- Fecundity = # births / female / unit time

(*unit time* can be any unit of time, but is - ususally - year)

- **D** = Deaths
- Mortality (rate) = probability of death / unit time
- Survival (rate) = 1 Mortality rate

Basic fact of life I: Survival varies with age!

- Survival Probability (S_0, S_1, S_2, \ldots) always between 0 and 1. Cumulative Survival ($1, S_0, S_0S_1, S_0S_1S_2, \ldots$) always starts at 1 and goes to 0

Steller sea lions (Eumetopias *jubatus*)

Age Specific Survival Rates of Steller Sea Lions at Rookeries with Divergent Population Trends in the Russian Far East 13/23

Basic fact of life II: Fecundity varies with age!

Life History is the reproduction / mortality pattern

Survival curves

- **TYPE I:** high survivorship for juveniles; most mortality late in life
- **TYPE II:** survivorship (or mortality) is relatively constant throughout life
- **TYPE III:** low survivorship for juveniles; survivorship high once older ages are reached

Figure 3.2 Type I, II, and III survivorship curves. Note the logarithmic transformation of the *y* axis.

r (oysters) vs. K (walrus) strategy

r-selected species

- lots of offspring
- little or no parental investment
- low survivorship
- unstable environments
- small
- early maturity
- semelparous
- short life-expectancy
- Type III survivorship

Important note:

Walruses do not in fact eat oysters.

K-selected species

- few offspring
- lots of parental investment
- high survivorship
- stable environments
- large
- late maturity
- iteroparous
- long life-expectancy
- Type I survivorship schedule

Nice theory you've got there, but ...

- What about **trees**? They're big, they're long-lived (very **K**), but they produce and disperse a **heckload** of seeds (very, very **r**).
- What about **iteroparous** fish species (**K**) that are hedging their bets against high inter-annual variation in environmental conditions (very **r**)?

To learn more: Consider EFB 370

17/23

Body Condition and Physiology

Fecundity and Survival both depend very much on body condition.

Body condition is measured in many ways, for example:.

We analysed two metrics of body condition: i) a direct subcutaneous **fat score (categorical, 1-5)**, assessed by palpating the belly-loin, with the badger laterally recumbent, and ii) a **body condition index (BCI)** estimated using a ratio-based approach for each capture: log (body mass)/log (body length).

European badger (Meles meles):

(Ross et al. 2021)

19/23

Remote assessments of body condition

Field measurements made using categorical assessments.

Image: Constraint of Constr

but detectably over lower rump. tat layer. rolling tat, possibly jig Condition: This is a subjective determination of bear's body condition based on assessment of body fi

Other measurements

Note invasive measures

Kidney fat

• healthy mammals

Bone marrow fat

• informative for nonhealthy mammals

Condition metric	Condition quantification			External measure				
	Qualitative	Raw quantitative	Adjusted quantitative	External	Invasive	Pros	Cons	Pictorial example
Mass (e.g. body mass)		•		٠		Easy to measure; non-invasive	Can fluctuate rapidly; can differ with age, sex and reproductive status	
Length (e.g. body length)		•		٠		Easy to measure; non-invasive	Can differ with age and sex; often does not change after reaching adult state	
Mass adjusted for body size (e.g. residuals of mass vs. length regression)			•	•		Controls for effect of body size on condition	Difficult to compare across populations; different mass and size measurements can result in equal scores	High Start Mass
Subjective score (e.g. body fat score)	•			•		Non-invasive; can be used for multiple age classes, sexes	Prone to interobserver variation; lipid stores might not reflect health or reproductive success	R
Assessment of internal characteristics (e.g. kidney fat cover index)	•				•	May not require entire animal or can be provided by hunters	Lethal sampling; see above concerns about lipids	Fat layer
Measurement of internal characteristics (e.g. % bone marrow fat)		•			٠	May not require entire animal or can be provided by hunters	Lethal sampling; see above concerns about lipids	-

Influences on body condition

- Food availability including (often) high seasonal variation
 - These relationships make **Body Condition** a good proxy for **Habitat Quality**
- Disease and parasite loads
- **Stress** from human, predator impacts, or social interactions

Consequences of (poor) body condition

- Lower survival & lower fecundity
 - Varies by age
 - Often physiological energetic trade-offs between survival and reproduction (less gonadal growth, later maturation, skipped estrus)
- Population level impacts
 - mechanisms of **Density Dependence**

21/23

Introducing ...

Eaqan Chaudhry

- Wildlife physiologist
- Ph.D. candidate in Environmental Biology, SUNY-ESF with **Dr. Cynthia Downs**
- Pop wildlife quiz: **IS** or **IS NOT** holding a New England cottontail rabbit in the image to the right?

