Counting animals

EFB 390: Wildlife Ecology and Management

Dr. Ele Gurarie
September 12, 2023

Goals of wildlife management

1. make them increase
2. make them decrease
3. keep them stable
4. do nothing - but keep an eye on them

What do we need to know!?

A count can be simple

$1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16$, $17,18,19,20,21,22,23,24,25,26,27,28,29$, $30,31,32,33,34,35,36,37,38,39,40,41,42$, $43,44,45,46,47,48,49,50,51,52,53,54,55$, $56,57,58,59,60,61,62,63,64,65,66,67,68$, $69,70,71,72,73,74,75,76,77,78,79,80,81$, $82,83,84,85,86,87,88,89,90,91,92,93,94$, $95,96,97,98,99,100,101,102,103,104,105$, $106,107,108,109,110,111,112,113,114,115$, $116,117,118,119,120,121,122,123,124,125$, $126,127,128,129,130,131,132,133,134,135$, $136,137,138,139,140,141,142,143,144,145$, $146,147,148,149,150,151,152,153,154,155$, $156,157,158,159,160,161,162,163,164,165$, $166,167,168,169,170,171,172,173,174,175$, $176,177,178,179,180,181,182,183,184,185$, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200

... or a count can be pretty darned complex

Variance on the estimator of the variance of a Pacific cod count based on ondeck observations of harvest in pots:
respectively. The expectation of Eq. 4.17 is

$$
\begin{aligned}
E\left(1 \hat{\Psi}_{k}\right) & =E_{s_{s_{u}}}\left\{\frac{M_{k}}{m_{2 k}} \sum_{i=1}^{m_{2 k}} E_{s_{L_{i}}}\left[\frac{N_{k i}}{n_{k i}} E_{o o}\left(\frac{n_{k}}{n_{O k}} E_{s i}\left(\frac{N_{O m}}{n_{A m}} \psi_{A k i}\right)\right)\right]\right\} \\
& =E_{s_{s_{w}}}\left\{\frac{M_{k}}{m_{2 k}} \sum_{i=1}^{m_{s k}} E_{s_{L_{i}}}\left[\frac{N_{k i}}{n_{k i}} E_{s o}\left(\frac{n_{k}}{n_{O k}} \psi_{O k i}\right)\right]\right\} \\
& =E_{s_{w}}\left[\frac{M_{k}}{m_{2 k}} \sum_{i=1}^{m_{2 k}} E_{s_{L_{i}}}\left(\frac{N_{k i}}{n_{k i}} \psi_{L \Delta i}\right)\right]=E_{s_{v v}}\left(\frac{M_{k}}{m_{2 k}} \sum_{i=1}^{m_{2 k}} \Psi_{k i}\right)=\Psi_{k} .
\end{aligned}
$$

The variance of the estimator can be written as

$$
\begin{aligned}
V\left(1 \hat{\Psi}_{k}\right) & =\underbrace{V_{s_{w}}\left\{E_{s_{L_{4}}}\left[E_{s_{0}}\left(E_{s_{A}}\left(1 \hat{\Psi}_{k}\right)\right)\right]\right\}}_{V_{1}}+\underbrace{E_{s_{0}}\left\{V_{s_{L_{4}}}\left[E_{s_{o}}\left(E_{s_{A}}\left(1 \hat{\Psi}_{k}\right)\right)\right]\right\}}_{V_{3}} \\
& +\underbrace{E_{s_{w}}\left\{E_{s_{L_{1}}}\left[V_{s_{o}}\left(E_{s_{A}}\left(1 \hat{\Psi}_{k}\right)\right)\right]\right\}}_{V_{2}}+\underbrace{E_{1}}_{E_{s_{0}}\left\{E_{s_{L_{4}}}\left[E_{s_{o}}\left(V_{s_{A}}\left(1 \hat{\Psi}_{k}\right)\right)\right]\right\}} .
\end{aligned}
$$

Component-wise,

$$
\begin{gathered}
V_{1}=V_{s w}\left(\frac{M_{k}}{m_{2 k}} \sum_{i=1}^{m_{2 k}} \Psi_{k i}\right)=M_{k}\left(\frac{M_{k}}{m_{2 k}}-1\right) \frac{\sum_{i=1}^{M_{k}}\left(\Psi_{k i}-\bar{\Psi}_{k}\right)\left(\Psi_{k i}-\bar{\Psi}_{k}\right)^{T}}{M_{k}-1}, \\
V_{2}=E_{s_{s w}}\left[\left(\frac{M_{k}}{m_{2 k}}\right)^{2} \sum_{i=1}^{m_{2 k}} V_{s_{L_{i}}}\left(\frac{N_{k i}}{n_{k i}} \psi_{L k i}\right)\right] \\
=\frac{M_{k}}{m_{2 k}} \sum_{i=1}^{M_{k}} N_{k i}\left(\frac{N_{k i}}{n_{k i}}-1\right) \frac{N_{k i}\left[\operatorname{diag}\left(\mathbf{P}_{k i}\right)-\mathbf{P}_{k i} \mathbf{P}_{k i}^{T}\right]}{N_{k i}-1},
\end{gathered}
$$

$$
\begin{aligned}
& V_{3}=E_{s_{w}}\left\{\left(\frac{M_{k}}{m_{2 k}}\right)^{2} E_{s_{L_{4}}}\left[V_{s_{o}}\left(\sum_{i=1}^{m_{2 k}} \frac{N_{k i}}{n_{k i}} \frac{n_{k}}{n_{O k}} \psi_{O k i}\right)\right]\right\} \\
& =E_{s_{\alpha}}\left\{\left(\frac{M_{k}}{m_{2 k}}\right)^{2} \sum_{i=1}^{m_{2 k}} E_{s_{L_{i}}}\left[\left(\frac{N_{k i}}{n_{k i}}\right)^{2} V_{s o}\left(\frac{n_{k}}{n_{O k}} \psi_{O k i}\right)\right]\right\} \\
& +E_{s_{s}}\left\{\left(\frac{M_{k}}{m_{2 k}}\right)^{2} \sum_{i \neq j}^{m_{2 k}} E_{s_{L_{i}}}\left[\frac{N_{k i}}{n_{k i}} \frac{N_{k j}}{n_{k j}} \operatorname{Cov}_{s o}\left(\frac{n_{k}}{n_{O k}} \psi_{O k i} \frac{n_{k}}{n_{O k}} \psi_{O k j}\right)\right]\right\} \\
& =E_{s u s u^{u}}\left\{\left(\frac{M_{k}}{m_{2 k}}\right)^{2} \sum_{i=1}^{m_{2 k}} E_{S_{L_{i}}}\left[\left(\frac{N_{k i}}{n_{k i}}\right)^{2} n_{k}\left(\frac{n_{k}}{n_{O k}}-1\right) \frac{n_{k}\left[\operatorname{diag}\left(\mathbf{p}_{L k i}\right)-\mathbf{p}_{L k i} \mathbf{p}_{L k i}^{T}\right]}{n_{k}-1}\right]\right\} \\
& -E_{s_{k}}\left\{\left(\frac{M_{k}}{m_{2 k}}\right)^{2} \sum_{i \neq j}^{m_{2 k}} \sum_{S_{L_{i}}}\left[\frac{N_{k i}}{n_{k i}} N_{k j} n_{k j}\left(\frac{n_{k}}{n_{O k}}-1\right) \frac{n_{k} \mathrm{p}_{L k i} \mathrm{p}_{L k j}^{T}}{n_{k}-1}\right]\right\} \\
& \text { and } \\
& V_{4}=E_{s_{0}}\left\{\left(\frac{M_{k}}{m_{2 k}}\right)^{2} E_{s_{L_{i}}}\left[E_{s i o l}\left(V_{s_{\Lambda}}\left(\sum_{i=1}^{m_{2 k}} \frac{N_{k k}}{n_{k i}} \frac{n_{k}}{n_{O k}} \frac{N_{O m}}{n_{A m}} \psi_{A k i}\right)\right)\right]\right\} \\
& =E_{s_{u}}\left\{(\frac { M _ { k } } { m _ { 2 k } }) ^ { 2 } E _ { s _ { L _ { i } } } \left[\sum_{i=1}^{m_{2 k}} E_{s o}\left[\left(\frac{N_{k i}}{n_{k i}} \frac{n_{k}}{n_{O k}}\right)^{2} V_{s i}\left(\frac{N_{O m}}{n_{A m}} \psi_{A k i}\right)\right]\right.\right. \\
& \left.\left.+\sum_{i \neq j}^{m_{2 k}} E_{E_{o}}\left[\frac{N_{k k}}{n_{k i}} \frac{N_{k j}}{n_{k j}}\left(\frac{n_{k}}{n_{O k}}\right)^{2} \operatorname{Cov}_{s_{A}}\left(\frac{N_{O m}}{n_{A m}} \psi_{A k k}, \frac{N_{O m}}{n_{A m}} \psi_{A k j}\right)\right]\right]\right\} \\
& =E_{s_{s_{k}}}\left\{\left(\frac{M_{k}}{m_{2 k}}\right)^{2} \sum_{i=1}^{2 m_{2 k}} E_{s_{L_{i}}}\left[\left(\frac{N_{k i}}{n_{k i}} \frac{n_{k}}{n_{O k}}\right)^{2} N_{O m}^{2}\left(\frac{N_{O m}}{n_{A m}}-1\right) \frac{\left[\operatorname{diag}\left(\mathbf{p}_{O k}\right)-\mathbf{p}_{O K} \mathbf{p}_{O k i}^{T}\right]}{N_{O m}-1}\right]\right\} \\
& -E_{s_{w}}\left\{\left(\frac{M_{k}}{m_{2 k}}\right)^{2} \sum_{i \neq j}^{m_{2 k}} \sum_{s_{L_{i}}}\left[\frac{N_{k k}}{n_{k i}} \frac{N_{k j}}{n_{k j}}\left(\frac{n_{k}}{n_{O k}}\right)^{2} N_{O m}^{2}\left(\frac{N_{O m}}{n_{A m}}-1\right) \frac{\mathrm{P}_{o k i} \mathrm{P}_{O k j}^{T}}{N_{O m}-1}\right]\right\}
\end{aligned}
$$

An observation

Counting fish is just like counting trees, except they're invisible and they move ...

Three broad approaches (with sub-categories)

1. Compete census (total count)
2. Sample count

- Counts along transects or variable plots

3. Mark-racapture/resight
4. Population index

- count signs or correlates, not animals

Some considerations

- Do I need absolute numbers?
- How precise of an estimate do I want?
- What is the cost of the estimate?
- Is an index sufficient?
- How frequently do we need to survey/census?

Two important considerations:

Accuracy

Is the estimate biased?

- On average, on target

Determined by design.

- how well you throw the dart?

ACCURACY AND PRECISION

ARE NOT THESAME THING

Can be difficult to assess.

- beacuse there isn't usually a dartboard!

Precision

What is the error or variance or spread on the resulting estimate?
Quantified with Confidence Intervals (C.I.) (or coefficients of variation (C.V.))
Determined by effort and computed with (sometimes very fancy) statistics.
Generally: bigger the sample = smaller error $=$ higher precision.

Very accurate, but very imprecise:

What nuclear secrets could Trump have possibly taken?

A nuclear weapons historian explains why it's so hard to know what material
Trump took.
By Christian Paz | @realcpaz | Aug 12, 2022, 7:30pm EDT
"It could be anything ranging from something that would endanger the lives of hundreds of millions of people to something that has no impact on anything whatsoever. That's how vague the classified categorization is," Alex Wellerstein, a historian of science and nuclear weapons, told me.

Increase both accuracy and precision as contraints on effort (\& costs).

Generally, there a higher premium on accuracy

- (i.e. better an unbiased but imprecise estimate, than a highly precise but biased estimate).

When might BIAS not be so important?

If the bias is consistent, repeated measures can tell you how things are changing

Method I: Total Count, aka. Census

Pros

- Simple to explain!
- Simple math (arithmetic)!
- Very precise

Cons

- Usually - VERY difficult / expensive to perform
- Only possible for certain kinds of animals
- Almost always biased!

What kinds of animals can we census?

Census Examples

- U.S. Census
- Hippopatomuses in clear rivers*
- Large game (elephants, rhinos, wildebeest) within some parks / game reserves in African savanna*
- Apparently - until the 1950's - many deer / elk herds in the West.*
*- examples from Fryxell book ... but a bit tricky to confirm.

Northern Fur Seals Callorhinus ursinus

- Once extemely abundant
- VERY heavily harvested
- Paid off 1867 purchase Alaska in 30 years
- Reproduce (essentially) in only 6 rookeries worldwide
- At heart of the first international wildlife management treaty.

Count 'em!

Tyuleni Island

Lovushki Island Fur Seal Pup Count

technology: Count Clickers | Notepad

Lovushki Island Fur Seal Pup Count

technology: Bamboo poles for self-defense

Fur seal count: Source of variation?

Individual counters

Pretty good agreement.

Fur seal count: High Precision!

Point Estimate:
$\widehat{N}=28,792$
Standard Error (s.e.):
$\sigma_{e}=216$
95\% Confidence Interval
$\widehat{N} \pm 2 \sigma_{e}=(28,630-29,220)$

Coefficient of variation

$\frac{\sigma_{e}}{\widehat{N}}=0.75 \%$

furseal count what bowithcatam?

What are potential sources of error (bias)?

What direction is that bias in?

