

Drawbacks of total counts / censusing

Expensive & labor-time intensive

Impractical for MOST species / systems

- need to ALL be **visible**
- the **ENTIRE** study area needs to be survey-able

Hard to assess precision

Hippos

Is the great Elephant Census a Census?

3/29

Sample counts

Simple idea:

- count *some* of the individuals
- extrapolate!

In practice:

- Involves some tricky statistics and modeling!
- Necessarily less precise due to sampling error.
- BUT ... if properly done ... more *accurate* and **much less effort**.

A random population

Population density

N = A imes D

- N total count
- A total area
 D overall density

5/29

Sampling from the population

Sample density:

$$egin{aligned} n_{sample} &= \sum_{i=1}^k n_i \ a_{sample} &= \sum_{i=1}^k a_i \ d_{sample} &= rac{n_{sample}}{a_{sample}} \end{aligned}$$

Squares, aka, quadrats

	Population	Sample
size	N	n_s
area	A	a_s
density	D	d_s

Note: sample density is an *estimate* of total density. So $\widehat{D} = d_s$.

True population:

N = A imes D

Population **estimate** (best guess for N): just replace true (unknown) density D with *sampling estimate* of density d_s :

$$\widehat{N} = A imes \widehat{D} = A imes rac{n_s}{a_s}$$

7/29

Example

Data

10 quadrats; 10x10 km each n = {0,0,5,0,3,1,2,3,6,1} note: variability / randomness!

Analysis

$$egin{aligned} n_s &= \sum n_i = 21 \ d_s &= \widehat{D} = rac{35}{10 imes 10 imes 10} = 0.021 \ A &= 100 imes 100 \end{aligned}$$

final estimate:

 $\widehat{N} = \widehat{D} imes A = 100 imes 100 imes 0.021 = 210$

What happens when we do this many times?

Every time you do this, you get a different value for \widehat{N} .

9/29

Statistics

Mean of estimates:

 $\widehat{N}=301.5$

S.D. of estimate:

$$s_{\widehat{N}}=54.6$$

important: the standard deviation of an estimate = standard error, SE

95% Confidence Interval:

$$\widehat{N}\pm 1.96 imes SE=\{195-408\}$$

note: the 1.96 is the number of standard deviatinos that captures 95% of a Normal distribution.

General principle: The bigger the sample, the smaller the error.

1. If $a_s \ll A$ (i.e. low sampling intensity)

$$SE(\widehat{N}) = rac{A}{a} \sqrt{\sum n_i}$$

remember: $n_s = \sum n_i$ is the total sample count

in our example: $SE = 100^2/(10 imes 10^2)\sqrt{30} = 54.8$

2. If you are NOT resampling previously sampled locations:

$$SE(\widehat{N}\,) = rac{A}{a} \sqrt{\sum n_i (1-a_s/A)}$$

This is the Finite Area Correction. If a = A - you sampled everything - SE goes to 0 as expected.

in our example: SE=54.5 ... Almost no difference (because $a\ll A$).

11/29

Some more complex formulae

from Fryxell book Chapter 12:

Table 13.3 Estimates and their standard errors for animals counted on transects, quadrats, or sections. The models are described in the text.

Model	Density	Numbers
<i>Simple</i> Estimate Standard error of estimate (SWR) Standard error of estimate (SWOR)	$D = \sum y / \sum a$ SE(D) ₁ = 1/a × $\sqrt{[(\sum y^2 - (\sum y)^2/n)/(n(n-1))]}$ SE(D) ₂ = SE(D) ₁ × $\sqrt{[1 - (\sum a)/A]}$	$Y = A \times D$ SE(Y) = A × SE(D) ₁ SE(Y) = A × SE(D) ₂
<i>Ratio</i> Estimate Standard error of estimate (SWR) Standard error of estimate (SWOR)	$D = \sum y / \sum a$ SE(D) ₃ = n/\sum a \times \frac{1}{(1/n(n-1))(\sum y^2 + D^2\sum a^2 - 2D\sum ay)]} SE(D) ₄ = SE(D) ₃ \times \sqrt{[1 - (\sum a)/A]}	$Y = A \times D$ SE(Y) = A × SE(D) ₃ SE(Y) = A × SE(D) ₄
<i>PPS</i> Estimate Standard error of estimate (SWR)	$d = 1/n \times \sum (y/a)$ SE(D) = $\sqrt{[(\sum (y/a)^2 - (\sum (y/a))^2/n)/(n(n-1))]}$	$Y = A \times d$ SE(Y) = A × SE(d)

SWR, sampling with replacement; SWOR, sampling without replacement. Notation is given in Section 13.5.1.

These are used when **sampling areas** are unequal, and account for differences when sampling **with replacement** or **without replacement**.

Poisson process

Models *counts*. If you have a perfectly random process with mean *density* (aka *intensity*) 1, you might have some 0 counts, you might have some higher counts. The *average* will be 1:

Poisson process

Here, the intensity is 4 ...

Poisson process

... and 10. Note, the bigger the intensity, the more "bell-shaped" the curve.

15/29

Poisson distribution holds if process is truly random

... not **clustered** or **inhibited**

If you **sample** from these kinds of spatial distributions, your standard error might be smaller (*inhibited*) or larger (*clustering*). This is called *dispersion*.

Also ... densities of animals can depend on habitat

Wolf habitat use

If you look closely:

- No locations in lakes
- Relatively few in bogs / cultivated areas.
- Quite a few in mixed and coniferous forest

17 / 29

Imagine a section of forest ...

... with observations of moose

How can we tell what the moose prefers?

Habitat	Area	n	Density
open	100	21	0.21
mixed	100	43	0.43
dense	200	31	0.17
total	400	95	0.24

Knowing how densities differ as a function of **covariates** can be very important for generating estimates of abundances, increasing both **accuracy** and **precision**, and informing **survey design**.

19/29

Sample frames need not be **squares**

Transects

Linear strip, usually from an aerial survey.

Efficient way to sample a lot of territory.

If "perfect detection", referred to as a **strip transect**.

Statistics - essentially identical to quadrat sampling.

Stratified sampling for more efficient estimation

Sample more intensely in those habitats where animals are more likely to be found. Intensely survey **blocks** where detection is more difficult.

https://media.hhmi.org/biointeractive/click/elephants/survey/survey-aerial-surveys-methods.html

21/29

Stratified sampling for more efficient estimation

Actual elephant flight paths,

Stratified sampling

Stratification is used to optimize **effort** and **precision**. Aircraft cost thousands of dollars per hour!

(In all of these comprehensize surveys - *design* takes care of **accuracy**).

23 / 29

Sampling strategies

- (a) simple random,
- (b) stratified random,
- (c) systematic,

(d) pseudo-random (systematic unaligned).

Each has advantages and disadvantages.

See also: Adaptive Sampling

Detections usually get *worse* with distance!

OXFORD

Introduction to

Distance Sampling

Г. Buckland, D. R. Anderson, K. P. Burnha J. L. Laake, D. L. Borchers and L. Thomas

Distance Sampling

The statistics of accounting for visibility decreasing with distance

25 / 29

Example reindeer in Svalbard

Estimated detection distance, compared to **total count**, incorporated **vegetation modeling**, computed **standard errors**, concluded that you can get a 15% C.V. for 1/2 the cost.

Example Ice-Seals

TRIBE LOBODONTINI

Example: Flag Counting at Baker

Nice video on counting caribou

https://vimeo.com/471257951

29 / 29