Counting Animals Part Il: Sample Counts

EfB 390: Willdifife Ecology and Management

Dre Ele Gurarie

September 12,2023

Drawbacks of total counts / censusing

Expensive \& labor-time intensive
Impractical for MOST species / systems

- need to ALL be visible
- the ENTIRE study area needs to be survey-able

Hard to assess precision

Hippos

Is the great Elephant Census a Census?

Sample counts

Simple idea:

- count some of the individuals
- extrapolate!

In practice:

- Involves some tricky statistics and modeling!
- Necessarily - less precise due to sampling error.
- BUT ... if properly done ... more accurate and much less effort.

A random population

Population density

$$
N=A \times D
$$

- N - total count
- A - total area
- D - overall density

Sampling from the population

Sampledensity:

$$
\begin{aligned}
n_{\text {sample }} & =\sum_{i=1}^{k} n_{i} \\
a_{\text {sample }} & =\sum_{i=1} a_{i} \\
d_{\text {sample }} & =\frac{n_{\text {sample }}}{a_{\text {sample }}}
\end{aligned}
$$

Squares, aka, quadrats

Sample vs. Population

	Population	Sample
size	N	n_{s}
area	A	a_{s}
density	D	d_{s}

Note: sample density is an estimate of total density. So $\widehat{D}=d_{s}$.
True population:

$$
N=A \times D
$$

Population estimate (best guess for N): just replace true (unknown) density D with sampling estimate of density d_{s} :

$$
\widehat{N}=A \times \widehat{D}=A \times \frac{n_{s}}{a_{s}}
$$

Example

Data 10 quadrats; $10 \times 10 \mathrm{~km}$ each $\mathrm{n}=\{0,0,5,0,3,1,2,3,6,1\}$ note: variability / randomness! Analysis

$$
\begin{aligned}
& n_{s}=\sum n_{i}=21 \\
& d_{s}=\widehat{D}=\frac{35}{10 \times 10 \times 10}=0.021 \\
& A=100 \times 100
\end{aligned}
$$

final estimate:

$$
\widehat{N}=\widehat{D} \times A=100 \times 100 \times 0.021=210
$$

What happens when we do this many times?

Every time you do this, you get a different value for \widehat{N}.

$9 / 29$

Statistics

Mean of estimates:

$$
\widehat{N}=301.5
$$

S.D. of estimate:

$$
s_{\widehat{N}}=54.6
$$

important: the standard deviation of an estimate = standard error, SE

95\% Confidence Interval:

$$
\widehat{N} \pm 1.96 \times S E=\{195-408\}
$$

note: the 1.96 is the number of standard deviatinos that captures 95% of a Normal distribution.

General principle: The bigger the sample, the smaller the error.

1. If $a_{s} \ll A$ (i.e. low sampling intensity)

$$
S E(\widehat{N})=\frac{A}{a} \sqrt{\sum n_{i}}
$$

remember: $n_{s}=\sum n_{i}$ is the total sample count

$$
\text { in our example: } S E=100^{2} /\left(10 \times 10^{2}\right) \sqrt{30}=54.8
$$

2. If you are NOT resampling previously sampled locations:

$$
S E(\widehat{N})=\frac{A}{a} \sqrt{\sum n_{i}\left(1-a_{s} / A\right)}
$$

This is the Finite Area Correction. If $a=A$ - you sampled everything - SE goes to 0 as expected.
in our example: $S E=54.5$... Almost no difference (because $a \ll A$).

Some more complex formulae

from Fryxell book Chapter 12:

Table 13.3 Estimates and their standard errors for animals counted on transects, quadrats, or sections. The models are described in the text.

Model	Density	Numbers
Simple		
Estimate	$D=\sum y / \sum a$	$Y=A \times D$
Standard error of estimate (SWR)	$\mathrm{SE}(D)_{1}=1 / a \times \sqrt{ }\left[\left(\sum y^{2}-\left(\sum y\right)^{2} / n\right) /(n(n-1))\right]$	$\mathrm{SE}(Y)=A \times \operatorname{SE}(D)_{1}$
Standard error of estimate (SWOR)	$\mathrm{SE}(D)_{2}=\operatorname{SE}(D)_{1} \times \sqrt{ }\left[1-\left(\sum a\right) / A\right]$	
Ratio $(Y)=A \times \operatorname{SE}(D)_{2}$		
Estimate	$D=\sum y / \sum a$	$Y=A \times D$
Standard error of estimate (SWR)	$\mathrm{SE}(D)_{3}=n / \sum a \times \sqrt{ }\left[(1 / n(n-1))\left(\sum y^{2}+D^{2} \Sigma a^{2}-2 D \sum a y\right)\right]$	$\mathrm{SE}(Y)=A \times \operatorname{SE}(D)_{3}$
Standard error of estimate (SWOR)	$\mathrm{SE}(D)_{4}=\operatorname{SE}(D)_{3} \times \sqrt{ }\left[1-\left(\sum a\right) / A\right]$	$\mathrm{SE}(Y)=A \times \operatorname{SE}(D)_{4}$
PPS		
Estimate	$d=1 / n \times \sum(y / a)$	$Y=A \times d$
Standard error of estimate (SWR)	$\mathrm{SE}(D)=\sqrt{ }\left[\left(\sum(y / a)^{2}-\left(\sum(y / a)\right)^{2} / n\right) /(n(n-1))\right]$	$\mathrm{SE}(Y)=A \times \operatorname{SE}(d)$

SWR, sampling with replacement; SWOR, sampling without replacement. Notation is given in Section 13.5.1.
These are used when sampling areas are unequal, and account for differences when sampling with replacement or without replacement.

Poisson process

Models counts. If you have a perfectly random process with mean density (aka intensity) 1, you might have some 0 counts, you might have some higher counts. The average will be 1:

Poisson process

Here, the intensity is $4 \ldots$

Poisson process

... and 10. Note, the bigger the intensity, the more "bell-shaped" the curve.

Here's the formula of the Poisson Distribution: $f(k ; \lambda)=\operatorname{Pr}(X=k)=\frac{\lambda^{k} e^{-\lambda}}{k!}$

Poisson distribution holds if process is truly random

... not clustered or inhibited

If you sample from these kinds of spatial distributions, your standard error might be smaller (inhibited) or larger (clustering). This is called dispersion.

Also ... densities of animals can depend on habitat

Wolf habitat use

Legend

- GPS locations of the Study Wolf Viki

Imagine a section of forest ...

$\begin{array}{ll}\square & \text { Open Forest } \\ \square & \text { Mixed Forest }\end{array}$
$\begin{array}{ll}\square & \text { Mixed Forest } \\ \square & \text { Coniferous Forest }\end{array}$

If you look closely:

- No locations in lakes
- Relatively few in bogs / cultivated areas.
- Quite a few in mixed and coniferous forest

with observations of moose

How can we tell what the moose prefers?

Habitat	Area	\mathbf{n}	Density
open	100	21	0.21
mixed	100	43	0.43
dense	200	31	0.17
total	400	95	0.24

Knowing how densities differ as a function of covariates can be very important for generating estimates of abundances, increasing both accuracy and precision, and informing survey design.

Sample frames need not be squares

Transects

Linear strip, usually from an aerial survey.

Efficient way to sample a lot of territory.

If "perfect detection", referred to as a strip transect.

Statistics - essentially identical to quadrat sampling.

Stratified sampling for more efficient estimation

Sample more intensely in those habitats where animals are more likely to be found. Intensely survey blocks where detection is more difficult.
https://media.hhmi.org/biointeractive/click/elephants/survey/survey-aerial-surveys-methods.html

Stratified sampling for more efficient estimation

Actual elephant flight paths,

Stratified sampling

Stratification is used to optimize effort and precision. Aircraft cost thousands of dollars per hour!
(In all of these comprehensize surveys - design takes care of accuracy).

Sampling strategies

(a) simple random,
(b) stratified random,
(c) systematic,
(d) pseudo-random (systematic unaligned).

Each has advantages and disadvantages.

See also: Adaptive Sampling

Detection function	Form
Uniform	$1 / w$
Half-normal	$\exp \left(-y^{2} / 2 \sigma^{2}\right)$
Hazard-rate	$1-\exp \left(-(y / \sigma)^{-\mathrm{b}}\right)$
Negative exponential	$\exp (-a y)$

Distance Sampling

The statistics of accounting for visibility decreasing with distance

Example reindeer in Svalbard

Ungulate population monitoring in an open tundra landscape: distance sampling versus total counts

Estimated detection distance, compared to total count, incorporated vegetation modeling, computed standard errors, concluded that you can get a 15% C.V. for $1 / 2$ the cost.

Example Ice-Seals

TRIBE LOBODONTINI

Example: Flag Counting at Baker

Nice video on counting caribou

https://vimeo.com/471257951

