Estimating Abundances of Antarctic Ice Seals

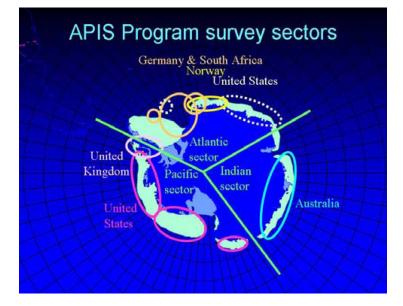
Elie Gurarie

EFB 390: Wildlife Ecology and Management

September 20, 2022

Polar Biol DOI 10.1007/s00300-016-2029-4

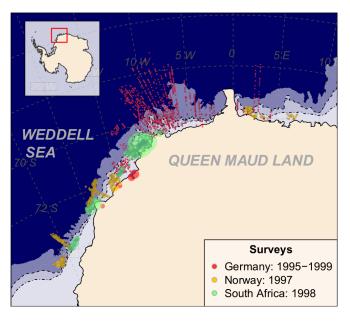
ORIGINAL PAPER


Distribution, density and abundance of Antarctic ice seals off Queen Maud Land and the eastern Weddell Sea

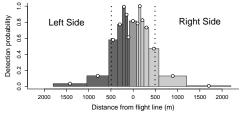
Eliezer Gurarie^{1,2} $_{\odot}$ · John L. Bengtson¹ · Marthán N. Bester^{3,4} · Arnoldus Schytte Blix⁵ · Michael Cameron¹ · Horst Bornemann⁶ · Erling S. Nordøy⁵ · Joachim Plötz⁶ · Daniel Steinhage⁶ · Peter Boveng¹

TRIBE LOBODONTINI

International APIS Sectors



The Mission

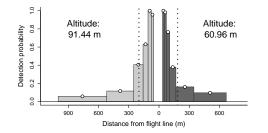

What is N_t ?

- To estimate global abundances of 4 ice seal species in Antarctica.
- To learn something about habitat preferences, ice-dependence, etc.

The Atlantic sector

Distance-dependent detection: Norway

- Bin-widths reported left and right side
- Central strip


Effective width:

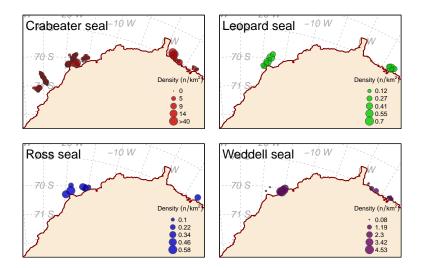
$$N = L \sum_{i=1}^{k} d_i w_i = L W^* D^*$$

Assumption: Highest bin density represents 100% detection.

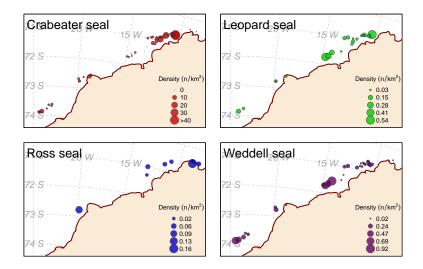
Result: *W*^{*} = **982.5** m

Distance-dependent detection: South Africa

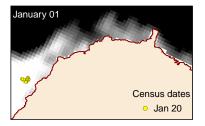
- Altitude (91.44 m and 60.94 m) and angles (10°) reported,
- Bins widths calculated
- Maximum distance assumed: 1000 m and 667 m.

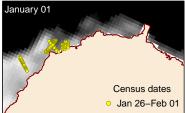

Result: $W^* = 399$ m at 91.44 m; 370.4 m at 60.96 m

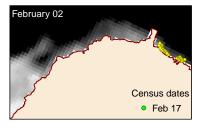
Species!


	Norway (1997)			South Africa (1998)			
	N	%	w/o Unid.	N	%	w/o Unid.	
Crabeater	1363	84.87	88.45	4157	86.78	96.16	
Leopard seal	12	0.75	0.78	42	0.88	0.97	
Ross seal	10	0.62	0.65	14	0.29	0.32	
Weddell seal	156	9.71	10.12	110	2.30	2.54	
Unidentified	65	4.05	-	467	9.75	-	

Norway: Species Distribution

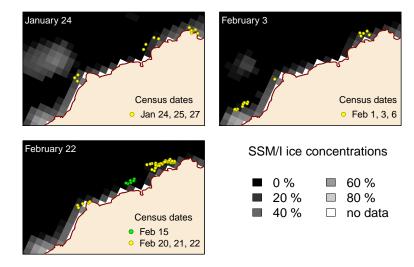

South Africa: Species Distribution

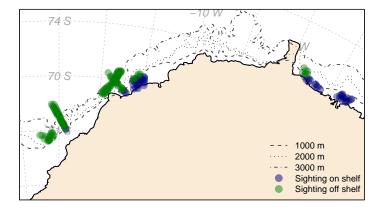


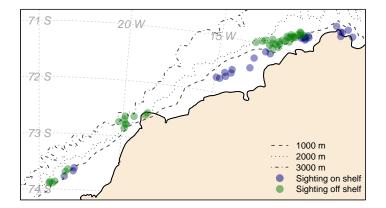

Covariates

- Distance to shore
- Sea Ice (SSMI)
 - Concentration (%)
 - Distance to 10% ice edge
 - Width of ice platform (km)
 - Change in width of ice platform (km)
- Bathymetry: On/Off shelf (< 1000m)

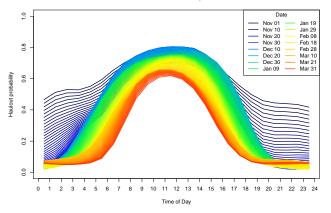
Norway: Ice concentration (1997)




SSM/I ice concentrations


South Africa: Ice concentration (1998)

Norway: Bathymetry


South Africa: Bathymetry

Time of day affects probability of sighting

$$D_{ij}^* = rac{D_{ij}}{P_s(ext{day, time of day})}$$

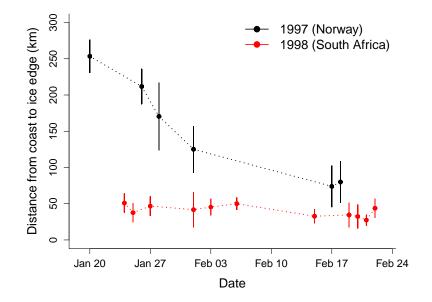
Modeled crabeater haulout probabilities

 P_s correction factor, derived from other studies of diving behavior of seals (Bengtson et al. 2011)

Modeling strategy

- Fit Density with respect to Covariates as well as possible with GLM.
- Use GLM to extrapolate over entire region of survey.

Raw Densities


Norway, 1997

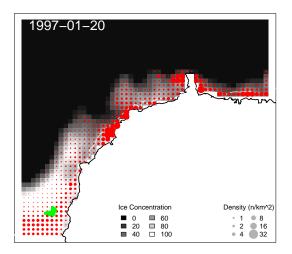
South Africa, 1998

					Survey	Area	Ν	Density
_	Survey	Area	N	Density		(km ²)		(ind./km ²)
		(km ²)		(ind./km ²)	2	21	98	4.62
	3	103	112	1.09	3	32	38	1.19
	4	96	148	1.55	4	26	8	0.31
	5	246	275	1.12	5	38	154	4.03
	6	157	123	0.78	6	9	34	3.92
	7	260	360	1.39	7	35	388	10.96
	9	266	328	1.23	8	35	225	6.42
	10	237	203	0.85	9	16	360	22.01
	11	113	57	0.51	10	11	163	14.57
	Total:	1479	1606	1.09	11	55	2591	47.36
_					12	12	195	15.97
					13	36	536	14.80
					Total:	327	4790	14.66

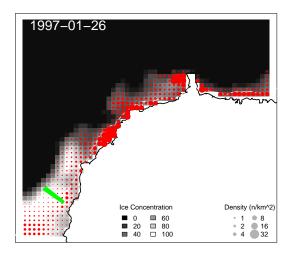
Order of magnitude difference! \ldots (explained entirely by availability of ice).

Ice Extent Index (MID)

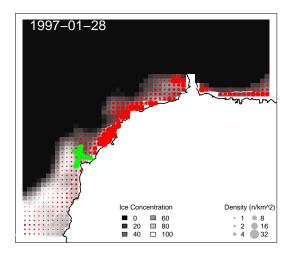
Complete Model

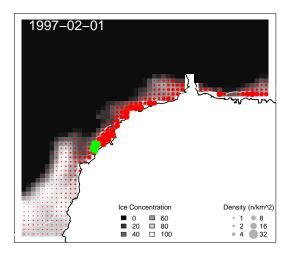

$\begin{aligned} Y &\sim \text{OnShelf} \times (\text{Ice} + \sqrt{\text{Ice}}) \times (\text{DEdge} + \sqrt{\text{DEdge}}) \\ &\times (\text{IceExtent} + \text{dIceExtent}). \end{aligned}$

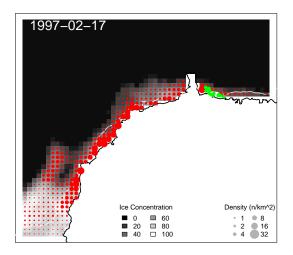
Model parameter estimates

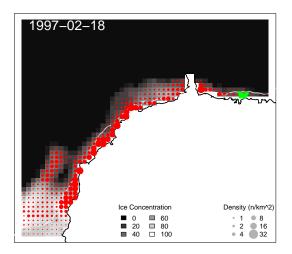

Factor	Norway	South Africa	Germany (all seals)			
	(Crabeater seals)		High ice	Medium ice	Low ice	
OnShelf	-1.72***	-0.85*			-1.5319***	
DEdge			-1.30**	-0.38 **		
√DEdge			-0.85*			
IceExtent	-0.43***	-0.86^{**}	-0.40^{**}	0.104		
dIceExtent	-0.30^{***}		-0.21 **			
Ice			0.50			
√Ice			-0.25	-0.585^{***}		
DEdge:IceExtent			1.17***	**		
dIceExtent:Ice			-0.95^{**}			
dIceExtent: √Ice			-1.22^{***}	-0.40^{**}		
OnShelf:IceExtent	-1.36**	0.78				
OnShelf:dIceExtent	-1.99***					
R^2	0.317	0.17				
$\widehat{ heta}$			0.78 (0.07)	0.53 (0.15)	0.055(5e-3)	
ΔΒΙC	36.2	6	38.3	9.06	1.6	

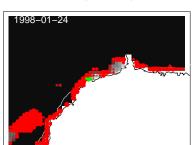
All parameter estimates are given for standardized covariates (except the binomial OnShelf variable) The significances are coded according to p-value: *** <0.001 \leq ** <0.01 \leq *< <0.05 \leq -<0.10


409000 (188000, 2083000)


424000 (185000, 12284000)


407000 (174000, 1562000)


359000 (164000, 1919000)



438000 (198000, 2291000)

458000 (204000, 5758000)

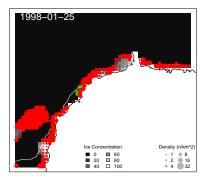
Ice Concentration

■ 40 □ 100

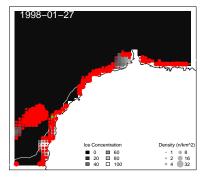
20

60

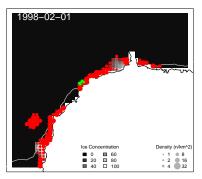
B 80

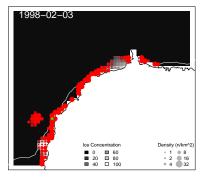

Density (n/km^2)

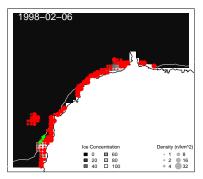
• 1 • 8

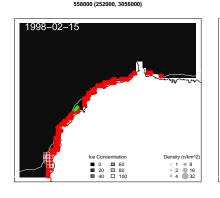

• 2 • 16 • 4 • 32

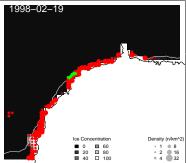
1111000 (510000, 6748000)

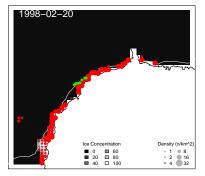

1129000 (526000, 6775000)

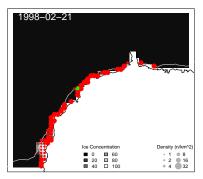


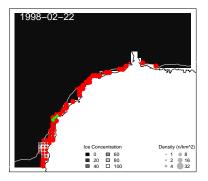

609000 (277000, 2472000)



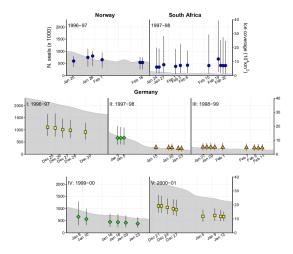

580000 (259000, 3960000)


582000 (260000, 3316000)


5e+05 (227000, 3229000)



454000 (208000, 3916000)


448000 (205000, 3063000)

447000 (203000, 2923000)

Final Results

Final Results

What is \widehat{N} (and 95% C.I.)?

- Crabeater seals, 514 (337–886) imes 10³
- Weddell seals, 60.0 (43.2–94.4) \times 10^3
- Leopard seals, 13.2 (5.50–39.7) \times 10^3
- Ross seals only 24 observed conservatively 830 (119-2894)