

The trickiest thing in sampling

Is computing the precision (standard errors / confidence intervals)
respectively. The expectation of Eq. 4.17 is

The variance of the estimator can be written as

$$
\begin{aligned}
& V\left(1 \hat{\Psi}_{k}\right)=\underbrace{V s_{s_{0}}\left\{E_{s_{s_{1}}}\left[E_{s_{s_{0}}}\left(E_{s_{s_{1}}}\left(1 \hat{\Psi_{k}}\right)\right)\right]\right\}}_{V_{1}}+\underbrace{E_{s_{0}}\left\{V_{s_{s_{1}}}\left[E_{s_{o}}\left(E_{s_{s}}\left(1 \hat{\Psi}_{k}\right)\right)\right]\right\}}_{V_{2}} \\
& +\underbrace{E_{s_{s}}\left\{E_{s_{s_{1}}}\left[V_{s_{o}}\left(E_{s_{A}}\left(1 \hat{\Psi}_{k}\right)\right)\right]\right\}}_{V_{3}}+\underbrace{E_{s_{0}}\left\{E_{s_{s_{4}}}\left[E_{s_{o}}\left(V_{s_{s_{A}}}\left(1 \hat{\Psi}_{k}\right)\right)\right]\right\}}_{V_{4}}
\end{aligned}
$$

Component-wise,

$$
\begin{aligned}
& V_{1}=V_{k s}\left(\frac{M_{k}}{m_{k}} \sum_{k=1}^{m_{k}} \boldsymbol{\Psi}_{k k}\right)=M_{k}\left(\frac{M_{k}}{m_{2 k}}-1\right) \frac{\sum_{i=1}^{M}\left(\boldsymbol{\Psi}_{k-}-\bar{\Psi}_{k}\right)\left(\boldsymbol{\Psi}_{k}-\overline{\boldsymbol{\Psi}_{k}}\right)^{T}}{M_{k}-1},
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{M_{k}}{m_{2 k}} \sum_{i=1}^{M_{k}} N_{k}\left(\frac{N_{k}}{n_{k d}}-1\right) \frac{N_{k}\left[\operatorname{diag}\left(\mathrm{P}_{k t}\right)-\mathrm{P}_{k \in} \mathrm{P}_{t]}\right]}{N_{k}-1},
\end{aligned}
$$

$$
\begin{aligned}
& \text { and }
\end{aligned}
$$

[^0]
General principle: The bigger the sample, the smaller the error.

k sample flames with counts n_{i}, each of area a out of large area A
total area sampled is much less than total Area:

$$
a_{s}=\sum_{i=1}^{k} a_{i}=k \times a \ll A
$$

then:

$$
\widehat{N}=\frac{A}{a_{s}} \sum c_{i}=\frac{A}{k \times a} \sum c_{i}
$$

$$
S E(\widehat{N})=\frac{A}{a_{s}} \sqrt{\sum n_{i}}=\frac{A}{a} \frac{\sqrt{\sum n_{i}}}{k}
$$

- $\widehat{N}=\frac{100 \times 100}{10 \times 10 \times 10} \times 21=210$
- $S E(\widehat{N})=\frac{100 \times 100}{10 \times 10 \times 10} \sqrt{21}=45.8$
- 95% C. I. $=\widehat{N} \pm 1.96 \times S E(\widehat{N})=\ldots$
- Coefficient of Variation $=\frac{S E(\widehat{N})}{\widehat{N}}=\ldots$

Example - single transect, simple formula

$$
S E(\widehat{D})=\frac{1}{a} \sqrt{\sum n_{i}} \text { and } S E(\widehat{N})=A \times S E(\widehat{D})
$$

$n=8 ; a=1000 ; A=10,000$

point estimates

$$
\begin{gathered}
\hat{d}=8 / 1,000=.008 \\
\widehat{N}=\hat{d} \times A=80
\end{gathered}
$$

standard errors:

$$
\begin{gathered}
S E(\widehat{D})=\frac{\sqrt{8}}{1000}=0.0028 \\
S E(\widehat{N})=0.0028 \times 10,000=28.28
\end{gathered}
$$

final abundance estimate:

$$
\widehat{N}=80
$$

$$
95 \% C I(\widehat{N})=\widehat{N} \pm 1.96 \times S E(\widehat{N})=\{24.5,135\}
$$

This is why you want lots of transects:

To capture variation!

This is also why you go along the gradient of variation:

gradient - means slope of (steepest) change

More complex formulae

from Fryxell book Chapter 12:

Table 13.3 Estimates and their standard errors for animals counted on transects, quadrats, or sections. The models are described in the text.

Model	Density	Numbers
Simple		
Estimate	$D=\sum y / \sum a$	$Y=A \times D$
Standard error of estimate (SWR)	$\mathrm{SE}(D)_{1}=1 / a \times \sqrt{ }\left[\left(\sum y^{2}-\left(\sum y\right)^{2} / n\right) /(n(n-1))\right]$	$\mathrm{SE}(Y)=A \times \operatorname{SE}(D)_{1}$
Standard error of estimate (SWOR)	$\mathrm{SE}(D)_{2}=\operatorname{SE}(D)_{1} \times \sqrt{ }\left[1-\left(\sum a\right) / A\right]$	$\mathrm{SE}(Y)=A \times \operatorname{SE}(D)_{2}$
Ratio		
Estimate	$D=\sum y / \sum a$	$Y=A \times D$
Standard error of estimate (SWR)	$\mathrm{SE}(D)_{3}=n / \sum a \times \sqrt{ }\left[(1 / n(n-1))\left(\sum y^{2}+D^{2} \sum a^{2}-2 D \sum a y\right)\right]$	$\mathrm{SE}(Y)=A \times \operatorname{SE}(D)_{3}$
Standard error of estimate (SWOR)	$\mathrm{SE}(D)_{4}=\operatorname{SE}(D)_{3} \times \sqrt{ }\left[1-\left(\sum a\right) / A\right]$	$\mathrm{SE}(Y)=A \times \operatorname{SE}(D)_{4}$
PPS		
Estimate	$d=1 / n \times \sum(y / a)$	$Y=A \times d$
Standard error of estimate (SWR)	$\mathrm{SE}(D)=\sqrt{ }\left[\left(\sum(y / a)^{2}-\left(\sum(y / a)\right)^{2} / n\right) /(n(n-1))\right]$	$\mathrm{SE}(Y)=A \times \operatorname{SE}(d)$

SWR, sampling with replacement; SWOR, sampling without replacement. Notation is given in Section 13.5.1.
These are used when sampling areas are unequal, and account for differences when sampling with replacement or without replacement.

Simple-SWR

- Simple: Equal sized sampling frames a_{i} all equal
- SWR: Sampling 'with replacement', i.e. frames OVERLAP; some individuals counted more than once..

$$
\text { meaning } \begin{array}{c|c}
& \text { in book } \\
a_{i} & \text { the area of a single unit } \\
n_{i} & \text { an individual sample count } \\
\hline A & \text { total study area } \\
\hline
\end{array}
$$

7 / 12

Example:

- $\widehat{N}=\frac{2+3+1+1}{100} \times 10,000=70$

- $S E(\widehat{N})=\frac{10,000}{100 \times \sqrt{4 \times 3}} \times$

$$
\sqrt{(1+1+9+4)-\frac{(1+1+3+2)^{2}}{4}}
$$

- $S E(\widehat{N})=\frac{50}{\sqrt{3}} \times \sqrt{15-\frac{49}{4}}=48$
- $\widehat{N}=70 ; 95 \% \mathrm{CI}=(-23,164)$

Anything wrong with this confidence interval?
data: counts $=\{2,3,1,1\}$
$\mathrm{a}=100 ; \mathrm{A}=10,000$

Example: More Heterogeneity

data:

- counts $=\{0,0,0,8\}$
- $\mathrm{a}=100 ; \mathrm{A}=10,000$

$$
\widehat{N}=80
$$

$$
S E(\widehat{N})=
$$

$$
\frac{50}{\sqrt{3}} \times \sqrt{(0+0+0+8)^{2}-\frac{\left(0+0+0+8^{2}\right)}{4}}=
$$

$$
=\frac{50}{\sqrt{3}} \times \sqrt{48}=\frac{50}{\sqrt{3}} 4 \sqrt{3}=200
$$

$$
95 \% \mathrm{CI}=(-130,470)
$$

Enormous confidence intervals, because of enormous variability in samples!

Simple - SWOR

- SWOR: Sampling without replacement, i.e. design guarantees no individual is counted more than once.

$$
S E\left(\widehat{D_{s w o r}}\right)=S E\left(\widehat{D_{s w r}}\right) \times \sqrt{1-a / A}
$$

The larger the proportion sampled (coverage) - the smaller the sampling error.

Ratio (SWR/SWOR)

Ratio: unequal sample frames (e.g. both hula hoops and meter squares).

- $\widehat{D}=\sum n_{i} / \sum y_{i}$ (same as before)
- Standard errors: more complicated ... see formulae.

Take-aways

- Is it very important to quantify uncertainty! But also, can be hard (and disheartening).
- Larger samples \& higher coverage \rightarrow smaller errors \rightarrow narrower confidence intervals \rightarrow more precision.
- The error estimates take into account sample randomness, but also heterogeneity. The more heterogeneous the distribution the larger the errors.
- Which is why ... you take that heterogeneity into in your estimates!

One more formula ... for combining estimates

If you have multiple sub-count estimates (e.g. one for each of r subregion):

$$
\cdot \widehat{N_{1}}, \widehat{N_{2}}, \ldots, \widehat{N_{r}}
$$

and each estimate has a standard error:

- $S E\left(\widehat{N_{1}}\right), S E\left(\widehat{N_{2}}\right), \ldots, S E\left(\widehat{N_{r}}\right)$
... the total estimate will be:

$$
\widehat{N}=\sum_{i=1}^{r} \widehat{N_{i}}
$$

and the standard error will be:

$$
S E(\widehat{N})=\sqrt{\sum_{i=1}^{r} S E\left(\widehat{N_{i}}\right)^{2}}
$$

Then ...
Will the estimate be more precise? You get to test this out in the field!

[^0]: where $\mathbf{P}_{k i}=\Psi_{k i} / N_{k i}, \mathbf{p}_{L k i}=\psi_{L k i} / n_{k}$ and $\mathbf{p o k i}=\psi_{O k i} / N_{O m}$.

