

The trickiest thing in sampling

Is computing the *precision* (standard errors / confidence intervals)

respectively. The expectation of Eq. 4.17 is

$$\begin{split} E\left({}_{1}\widehat{\Psi}_{k}\right) = & E_{s_{u}}\left\{\frac{M_{k}}{m_{2k}}\sum_{i=1}^{m_{2k}}E_{s_{L_{i}}}\left[\frac{N_{ki}}{n_{ki}}E_{s_{O}}\left(\frac{n_{k}}{n_{Ok}}E_{s_{A}}\left(\frac{N_{Om}}{n_{Am}}\psi_{Ak}\right)\right)\right]\right\} \\ = & E_{s_{u}}\left\{\frac{M_{k}}{m_{2k}}\sum_{i=1}^{m_{2k}}E_{s_{L_{i}}}\left[\frac{N_{ki}}{n_{ki}}E_{s_{O}}\left(\frac{n_{k}}{n_{Ok}}\psi_{Oki}\right)\right]\right\} \\ = & E_{s_{u}}\left[\frac{M_{k}}{m_{2k}}\sum_{i=1}^{m_{2k}}E_{s_{L_{i}}}\left(\frac{N_{ki}}{n_{ki}}\psi_{Lki}\right)\right] = E_{s_{u}}\left(\frac{M_{k}}{m_{2k}}\sum_{i=1}^{m_{2k}}\Psi_{ki}\right) = \Psi_{k}. \end{split}$$
 The variance of the estimator can be written as

$$V\left(_{1}\widehat{\Psi}_{k}\right) = \underbrace{V_{s_{w}}\left\{E_{s_{L_{i}}}\left[E_{s_{O}}\left(E_{s_{A}}\left(_{1}\widehat{\Psi}_{k}\right)\right)\right]\right\}}_{V_{1}} + \underbrace{E_{s_{w}}\left\{V_{s_{L_{i}}}\left[E_{s_{O}}\left(E_{s_{A}}\left(_{1}\widehat{\Psi}_{k}\right)\right)\right]\right\}}_{V_{2}} + \underbrace{E_{s_{w}}\left\{E_{s_{L_{i}}}\left[V_{s_{O}}\left(E_{s_{A}}\left(_{1}\widehat{\Psi}_{k}\right)\right)\right]\right\}}_{V_{2}} + \underbrace{E_{s_{w}}\left\{E_{s_{L_{i}}}\left[E_{s_{O}}\left(V_{s_{A}}\left(_{1}\widehat{\Psi}_{k}\right)\right)\right]\right\}}_{V_{2}}$$

Component-wise,

$$\begin{split} V_1 &= V_{sw}\left(\frac{M_k}{m_{2k}}\sum_{i=1}^{m_{2k}} \Psi_{ki}\right) = M_k \left(\frac{M_k}{m_{2k}} - 1\right) \frac{\sum_{i=1}^{M_k} \left(\Psi_{ki} - \overline{\Psi}_k\right) \left(\Psi_{ki} - \overline{\Psi}_k\right)^T}{M_k - 1}, \\ V_2 &= E_{sw}\left[\left(\frac{M_k}{m_{2k}}\right)^2 \sum_{i=1}^{m_{2k}} V_{s_{L_i}} \left(\frac{N_{ki}}{n_{ki}} \psi_{Lki}\right)\right] \\ &= \frac{M_k}{m_{2k}} \sum_{i=1}^{M_k} N_{ki} \left(\frac{N_{ki}}{n_{ki}} - 1\right) \frac{N_{ki} \left[\operatorname{diag}\left(\mathbf{P}_{ki}\right) - \mathbf{P}_{ki}\mathbf{P}_{ki}^T\right]}{N_{ki} - 1}, \end{split}$$

$$\begin{split} V_{3} = & E_{s_{w}}\left\{\left(\frac{M_{k}}{m_{2k}}\right)^{2} E_{s_{L_{i}}}\left[V_{s_{O}}\left(\sum_{i=1}^{m_{kk}}\frac{N_{ki}}{n_{ki}}\frac{n_{k}}{n_{Ok}}\psi_{Oki}\right)\right]\right\}\\ = & E_{s_{w}}\left\{\left(\frac{M_{k}}{m_{2k}}\right)^{2} \sum_{i=1}^{m_{2k}} E_{s_{L_{i}}}\left[\left(\frac{N_{ki}}{n_{ki}}\right)^{2} V_{s_{O}}\left(\frac{n_{k}}{n_{Ok}}\psi_{Oki}\right)\right]\right\}\\ & + & E_{s_{w}}\left\{\left(\frac{M_{k}}{m_{2k}}\right)^{2} \sum_{i=1}^{m_{2k}} E_{s_{L_{i}}}\left[\left(\frac{N_{ki}}{n_{ki}}\right)^{2} n_{k}\left(\frac{n_{k}}{n_{Ok}}-1\right)\frac{n_{k}\left[\operatorname{diag}\left(\mathbf{p}_{Lki}\right)-\mathbf{p}_{Lki}\mathbf{p}_{Lki}\right]}{n_{k}-1}\right]\right\}\\ & = & E_{s_{w}}\left\{\left(\frac{M_{k}}{m_{2k}}\right)^{2} \sum_{i=1}^{m_{2k}} E_{s_{L_{i}}}\left[\left(\frac{N_{ki}}{n_{ki}}\right)^{2} n_{k}\left(\frac{n_{k}}{n_{Ok}}-1\right)\frac{n_{k}\left[\operatorname{diag}\left(\mathbf{p}_{Lki}\right)-\mathbf{p}_{Lki}\mathbf{p}_{Lki}\right]}{n_{k}-1}\right]\right\}\\ & - & E_{s_{w}}\left\{\left(\frac{M_{k}}{m_{2k}}\right)^{2} E_{s_{L_{i}}}\left[E_{s_{O}}\left(V_{s_{A}}\left(\frac{m_{k}}{n_{ki}}\frac{n_{k}}{n_{kj}}n_{k}\left(\frac{n_{k}}{n_{Ok}}-1\right)\frac{n_{k}\mathbf{p}_{Lki}\mathbf{p}_{Lki}}{n_{k}-1}\right]\right\}\\ & \text{and}\\ V_{4} = & E_{s_{w}}\left\{\left(\frac{M_{k}}{m_{2k}}\right)^{2} E_{s_{L_{i}}}\left[\sum_{i=1}^{m_{2k}} E_{s_{O}_{i}}\left(\left(\frac{N_{ki}}{n_{ki}}\frac{n_{k}}{n_{Ok}}\right)^{2} V_{s_{A}}\left(\frac{N_{Om}}{n_{Am}}\psi_{Aki}\right)\right)\right]\right\}\\ & = & E_{s_{w}}\left\{\left(\frac{M_{k}}{m_{2k}}\right)^{2} E_{s_{L_{i}}}\left[\sum_{i=1}^{m_{2k}} E_{s_{O}}\left[\left(\frac{N_{ki}}{n_{ki}}\frac{n_{k}}{n_{Ok}}\right)^{2} Cov_{s_{A}}\left(\frac{N_{Om}}{n_{Am}}\psi_{Aki}\right)\right)\right]\right\}\\ & = & E_{s_{w}}\left\{\left(\frac{M_{k}}{m_{2k}}\right)^{2} \sum_{i=1}^{m_{2k}} E_{s_{L_{i}}}\left[\left(\frac{N_{ki}}{n_{ki}}\frac{n_{k}}{n_{Ok}}\right)^{2} N_{Om}^{2}\left(\frac{N_{Om}}{n_{Am}}-1\right)\frac{\left[\operatorname{diag}\left(\mathbf{p}_{Oki}\right)-\mathbf{p}_{Oki}\mathbf{p}_{Oki}^{T}\right]\right]\right\}\\ & - & E_{s_{w}}\left\{\left(\frac{M_{k}}{m_{2k}}\right)^{2} \sum_{i=1}^{m_{2k}} E_{s_{L_{i}}}\left[\left(\frac{N_{ki}}{n_{ki}}\frac{n_{k}}{n_{Ok}}\right)^{2} N_{Om}^{2}\left(\frac{N_{Om}}{n_{Am}}-1\right)\frac{\left[\operatorname{diag}\left(\mathbf{p}_{Oki}\right)-\mathbf{p}_{Oki}\mathbf{p}_{Oki}^{T}\right]\right]\right\}\\ & - & E_{s_{w}}\left\{\left(\frac{M_{k}}{m_{2k}}\right)^{2} \sum_{i=1}^{m_{2k}} E_{s_{L_{i}}}\left[\left(\frac{N_{ki}}{n_{ki}}\frac{n_{kj}}{n_{kj}}\left(\frac{n_{k}}{n_{Ok}}\right)^{2} N_{Om}^{2}\left(\frac{N_{Om}}{n_{Am}}-1\right)\frac{\left[\operatorname{diag}\left(\mathbf{p}_{Oki}\right)-\mathbf{p}_{Oki}\mathbf{p}_{Oki}^{T}\right]\right]\right\}\\ & - & E_{s_{w}}\left\{\left(\frac{M_{k}}{m_{2k}}\right)^{2} \sum_{i=1}^{m_{2k}} E_{s_{L_{i}}}\left[\left(\frac{N_{ki}}{n_{ki}}\frac{n_{kj}}{n_{kj}}\left(\frac{n_{kj}}{n_{kj}}\right)^{2}N_{Om}^{2}\left(\frac{N_{Om}}{n_{Am}}-1\right)\frac{\left[\operatorname{diag}\left(\mathbf{p}_{Ok$$

2/12

General principle: The bigger the sample, the smaller the error.

k sample flames with counts n_i , each of area a out of large area A then:

total area sampled is much less than total Area:

$$a_s = \sum_{i=1}^k a_i = k imes a \ll A$$

$$\widehat{N} = rac{A}{a_s}\sum c_i = rac{A}{k imes a}\sum c_i$$
 $SE(\widehat{N}) = rac{A}{a_s}\sqrt{\sum n_i} = rac{A}{a}rac{\sqrt{\sum n_i}}{k}$

•
$$\widehat{N} = \frac{100 \times 100}{10 \times 10 \times 10} \times 21 = 210$$

• $SE(\widehat{N}) = \frac{100 \times 100}{10 \times 10 \times 10} \sqrt{21} = 45.8$
• $95\% \ C. I. = \widehat{N} \pm 1.96 \times SE(\widehat{N}) = \dots$

- Coefficient of Variation = $\frac{SE(\widehat{N})}{\widehat{N}} = \dots$

3/12

Example - single transect, simple formula

$$SE(\widehat{D}) = rac{1}{a} \sqrt{\sum n_i} \;\; ext{and} \; SE(\widehat{N}) = A imes SE(\widehat{D})$$

n = 8; a = 1000; A = 10,000

point estimates

$$d = 8/1,000 = .008$$

$$N = d \times A = 80$$

standard errors:

$$SE(\widehat{D})=rac{\sqrt{8}}{1000}=0.0028$$

$$SE(\widehat{N})=0.0028 imes 10,000=28.28$$
 .

final abundance estimate:

$$\widehat{N}=80$$

$$95\%\,CI(\widehat{N}\,)=\widehat{N}\,\pm 1.96 imes SE(\widehat{N}\,)=\{24.5,135\}$$

This is why you *want* lots of transects:

To capture variation!

This is also why you go along the gradient of variation:

gradient - means slope of (steepest) change

More complex formulae

from Fryxell book Chapter 12:

Table 13.3 Estimates and their standard errors for animals counted on transects, quadrats, or sections. The models are described in the text.

Model	Density	Numbers
Simple Estimate Standard error of estimate (SWR) Standard error of estimate (SWOR)	$D = \sum y / \sum a$ $SE(D)_1 = 1/a \times \sqrt{[(\sum y^2 - (\sum y)^2/n)/(n(n-1))]}$ $SE(D)_2 = SE(D)_1 \times \sqrt{[1 - (\sum a)/A]}$	$Y = A \times D$ SE(Y) = A × SE(D) ₁ SE(Y) = A × SE(D) ₂
Ratio Estimate Standard error of estimate (SWR) Standard error of estimate (SWR)	$D = \sum y / \sum a$ $SE(D)_3 = n / \sum a \times \sqrt{[(1/n(n-1))(\sum y^2 + D^2 \sum a^2 - 2D \sum ay)]}$ $SE(D)_4 = SE(D)_3 \times \sqrt{[1 - (\sum a)/A]}$	$Y = A \times D$ $SE(Y) = A \times SE(D)_3$ $SE(Y) = A \times SE(D)_4$
<i>PPS</i> Estimate Standard error of estimate (SWR)	$d = 1/n \times \Sigma(y/a)$ SE(D) = $\sqrt{[(\Sigma(y/a)^2 - (\Sigma(y/a))^2/n)/(n(n-1))]}$	$Y = A \times d$ $SE(Y) = A \times SE(d)$

SWR, sampling with replacement; SWOR, sampling without replacement. Notation is given in Section 13.5.1.

These are used when **sampling areas** are unequal, and account for differences when sampling **with replacement** or **without replacement**.

Simple-SWR

- Simple: Equal sized sampling frames a_i all equal
- **SWR:** Sampling 'with replacement', i.e. frames *OVERLAP*; some individuals counted more than once..

$$SE(\widehat{D}) = rac{1}{a_i \sqrt{k(k-1)}} imes \sqrt{\sum n_i^2 - ig(\sum n_iig)^2/k}$$

$$SE(\widehat{N}) = A imes SE(\widehat{D})$$

variable	meaning	in book
k	number of units sampled	n
a_i	the area of a <i>single</i> unit	а
n_i	an individual sample count	у
A	total study area	

7/12

Example:

•
$$N =$$

data: counts = {2,3,1,1}

a = 100; A = 10,000

•
$$\widehat{N} = \frac{2+3+1+1}{100} \times 10,000 = 70$$

$$egin{array}{ll} \bullet & SE(\widehat{N}\,) = rac{10,000}{100 imes \sqrt{4 imes 3}} imes \ & \sqrt{(1+1+9+4) - rac{(1+1+3+2)^2}{4}} \end{array}$$

•
$$SE(\widehat{N}) = \frac{50}{\sqrt{3}} \times \sqrt{15 - \frac{49}{4}} = 48$$

•
$$\widehat{N} = 70; \ 95\%$$
CI = $(-23, 164)$

Anything wrong with this confidence interval?

Example: More Heterogeneity

data:

- counts = {0,0,0,8}
- a = 100; A = 10,000

 $\widehat{N} = 80$ $SE(\widehat{N}) =$ $\frac{50}{\sqrt{3}} \times \sqrt{(0+0+0+8)^2 - \frac{(0+0+0+8^2)}{4}} =$ $= \frac{50}{\sqrt{3}} \times \sqrt{48} = \frac{50}{\sqrt{3}} 4\sqrt{3} = 200$ 95%CI = (-130, 470)
Enormous confidence intervals, because of enormous variability in samples!

9/12

Simple - SWOR

• **SWOR:** Sampling *without* replacement, i.e. design guarantees no individual is counted more than once.

$$SE(\widehat{D_{swor}}) = SE(\widehat{D_{swr}}) imes \sqrt{1-a/A}$$

The larger the proportion sampled (*coverage*) - the smaller the **sampling** error.

Ratio (SWR/SWOR)

Ratio: unequal sample frames (e.g. both hula hoops and meter squares).

- + $\widehat{D} = \sum n_i / \sum y_i$ (same as before)
- Standard errors: more complicated ... see formulae.

Take-aways

- Is it very important to quantify uncertainty! But also, can be hard (and disheartening).
- Larger samples & higher coverage \rightarrow smaller errors \rightarrow narrower confidence intervals \rightarrow more precision.
- The error estimates take into account sample randomness, but also heterogeneity. The more heterogeneous the distribution the larger the errors.
- Which is why ... you take that heterogeneity into in your estimates!

One more formula ... for combining estimates

If you have multiple sub-count estimates (e.g. one for each of r subregion):

• $\widehat{N}_1, \widehat{N}_2, \ldots, \widehat{N}_r,$

... the **total** estimate will be:

$$\widehat{N} = \sum_{i=1}^r \widehat{N_i}$$

and the standard error will be:

•
$$SE(\widehat{N_1}), SE(\widehat{N_2}), \dots, SE(\widehat{N_r})$$

$$SE(\widehat{N}) = \sqrt{\sum_{i=1}^r SE(\widehat{N_i})^2}$$

Then ...

Will the estimate be more precise? You get to test this out in the field!