More on Mark-Recopture and otherladices

6
 EFB 390: Widldifé Ecologyand Management

Dr: Elie Gurarie
September 20, 2022

Mark-Recapture is Super Simple

1. mark random subset, 2. release, 3. recapture, 4. count marked

Mark-Recapture

Convert that to estimate:

$$
\widehat{N}=\frac{M \times C}{R}
$$

Lincoln-Petersen Index

Basic idea, ratios should be similar:

$$
\frac{\operatorname{marked}(M)}{\operatorname{total}(N)}=\frac{\text { markedin recapture }(R)}{\text { recapture }(C)}
$$

Mark-Recapture

Point Estimate:

$$
\widehat{N}=\frac{M \times C}{R}
$$

And (approximate) precision:

$$
S E(\widehat{N})=\sqrt{\frac{M^{2}(C+1)(C-R)}{(C+1)^{2}(C+2)}}
$$

I banded students!

... by going back in time and elaborately manipulating family histories so that exactly

$$
\mathbf{M}_{\mathbf{t}}=30
$$

of you have the letter

0

in your last name.

How many 0's?

You have 5 minutes to ask as many students in the class as you can (but not more than 20).

Ask whether they have an "O" in their last name.

Count yourself!
Report your results here:
Remember, your sample should be random! (do not seek out 'O's).

https://forms.gle/JpVNNjxpsHcTRM3a9

Pause to compute the results

Important assumptions of the Lincoln-Petersen Index

1. No deaths | no births
2. No immigration | no emigration
3. Random and equal probability sampling of marked and unmarked
4. No marks get lost

Do these assumptions hold for the Great Banded Student Count?

But when they don't hold

and if you go deep into statistical methods, you can learn a lot...
for example about Steller sea lions (Eumetopias jubatus).

Mark-recapture study (since 2004)

- > 200,000 - daily resights
- $>4,765$ animals - all photo controlled
- $>40,000$ - photos of marked animals

Estimates of:

- Survival
- Reproduction rates
- Migration

AFAIK - the best age-specific vital rates of any large mammal.
Birth Rates

Non-invasive mark-recapture

Day in the Life of a Wildlife Biologist

Non-invasive mark-recapture

- Visual identification of natural markings
- Camera traps
- Binoculars
- Fur snags - (genetic mark-recapture)
- Fecal samples - (genetic mark-recapture)
fur snags
camera traps

Example of estimates based on genetic mark-recapture

Spraint

From Wikipedia, the free encyclopedia
Spraint is the dung of the otter. ${ }^{[1]}$
Spraints are typically identified by smell and are known for their distinct odors, the smell of which has been described as ranging from freshly mown hay to putrefied fish. ${ }^{[2]}$ The European otter's spraints are black and slimy, 3-10 cm (1-4 in) long
Eurasian otter (Lutra lutra). Elusive, aquatic, nocturnal.

Deposits: spraint

Methods:

1. Collect spraint
2. Genotype microsattelites - those are the marks
3. Recapture (of spraint) proceeds as before

Using 2132 otter faeces of a wild otter population ... collected over six years (20062012) ... We provide precise population size estimate with confidence intervals (for 2012:
$\widehat{N}=20 \pm 2.1,95 \% \mathrm{CI}=16-25$)
(Lampa et al. 2015, PLOS)

Index counts

are indirect observations which can be related to total abundances OR which can be useful for detecting trends / comparisons where you don't care (or can't get) absolute abundances.

Examples:

- Bird calls
- Nest counts
- Roost counts
- Animal tracks
- Fecal counts

Studies in Avian Biology No. 6:76-80, 1981.

INDIRECT ESTIMATES OF ABUNDANCE OF BIRDS

Evelyn L. Bull ${ }^{1}$

[^0]
Fecal counts

Mule Deer Pellet Counts
$>$

Index-manipulation-index method

1. Obtain one index of population size: I_{1}
2. Remove a bunch of animals C
3. Obtain another index of population size: I_{2}

Then ...

$$
\begin{gathered}
\widehat{N}_{1}=\frac{I_{1} C}{I_{1}-I_{2}} \\
S D\left(\widehat{N_{1}}\right)=\widehat{N_{1}} \frac{q^{*}}{p^{*}} \sqrt{\frac{1}{I_{1}}+\frac{1}{I_{2}}}
\end{gathered}
$$

- p^{*} is proportion removed: $\frac{I_{1}-I_{2}}{I_{1}}$
- q^{*} is proportion remaining: $1-p^{*}$

Very important assumption: Closed population, i.e. no births / deaths / emigration

Feral horse - fecal index + cull + fecal index

Data:

$$
\begin{aligned}
& I_{1}=301 ; I_{2}=76 \\
& C=357 ; p *=0.748
\end{aligned}
$$

Feral horses - Beaty's Butte, Oregon

Estimates:
$\widehat{N_{1}}=(301 \times 357) /(301-76)=478$
with standard error:
$S E(Y 1) \approx 478 \times(0.252 / 0.748) \times \sqrt{(1 / 301+1 / 76)}=21$

North American Breeding Bird Survey

Based mainly on volunteer expert birder detection of male breeding songs.
In Partnership with:

North American Breeding Bird Survey

Good for identifying large-scale trends ... but hard to get abundance estimates:
Loggerhead Shrike Lanius ludovicianus
BBS Trend Map, 1966-2015

Counting tracks

Used widely in Russia and Finland in standardized, repeated, long-term random transects.

Method: ski, and count (and ID) every track you cross

Confersion to density estimate:
Formozov-Malyshev-Pereleshin (FMP)
$\widehat{D}=\frac{\pi}{2} \frac{x}{S \hat{M}}$
where:

- x - number of track crossings
- S - transect length
- M - animal movement length

Very simple, surprisingly effective.

4 km / side x 3
Note intense coverage!

Finland Wildlife Triangles

Detecting trends, and inferring predator-prey interactions.

Large-scale patterns

50,000 transects between 1950-2010

Moose trends

Figure 3. Map of moose population trends after the collapse of the Soviet Union. Magnitude of mean residuals reflects population growth rate in 1990s. Per capita population growth rate (1) sbows absolute population trend
in 1990s. For similar maps for the otber species, see Supporting Information.

Reveal impact of socioeconomic upheaval on wildlife.

Take-aways

Thinking about abundance estimation helps us think about: (a) tools for oberving and monitoring wildlife, (b) creative ways to make inferences about wildlife, (c) some of the sources of randomness and variability that characterize $A L L$ observations of wildlife.

Total counts

- expensive
- hard
- possible for few animals

Sample counts

- involve stats and good design
- possible for more animals

Mark-Recapture

- can give you MORE than just a count!
- requires long-term, multiple sampling
- some strong assumptions (if just abundance)
- often (not always) invasive

Index counts

- Least invasive
- Least precise estimates
- Can be scaled up - see growth of Citizen Science
- Useful for relative differences and trends

References

1. Altukhov, A. V., R. D. Andrews, D. G. Calkins, T. S. Gelatt, E. D. Gurarie, T. R. Loughlin, E. G. Mamaev, V. S. Nikulin, P. A. Permyakov, S. D. Ryazanov, V. V. Vertyankin, and V. N. Burkanov. 2015. Age Specific Survival Rates of Steller Sea Lions at Rookeries with Divergent Population Trends in the Russian Far East. PLOS ONE 10:e0127292.
2. Bragina, E. V., A. R. Ives, A. M. Pidgeon, T. Kuemmerle, L. M. Baskin, Y. P. Gubar, M. Piquer-Rodríguez, N. S. Keuler, V. G. Petrosyan, and V. C. Radeloff. 2015. Rapid declines of large mammal populations after the collapse of the Soviet Union: Wildlife Decline after Collapse of Socialism. Conservation Biology 29:844-853.
3. Eberhardt, L. L., A. K. Majorowicz, and J. A. Wilcox. 1982. Apparent Rates of Increase for Two Feral Horse Herds. The Journal of Wildlife Management 46:367.
4. Kauhala, K., and P. Helle. 2000. The interactions of predator and hare populations in Finland - a study based on wildlife monitoring counts. Annales Zoologici Fennici 37:151-160.
5. Lampa, S., J.-B. Mihoub, B. Gruber, R. Klenke, and K. Henle. 2015. Non-Invasive Genetic Mark-Recapture as a Means to Study Population Sizes and Marking Behaviour of the Elusive Eurasian Otter (Lutra lutra). PLOS ONE 10:e0125684.
6. Morgan, B. J. T., P. M. North, C. J. Ralph, and J. M. Scott. 1983. Estimating Numbers of Terrestrial Birds. Biometrics 39:1123.
7. Petit, E., and N. Valiere. 2006. Contributed Papers: Estimating Population Size with Noninvasive Capture-Mark-Recapture Data: Noninvasive Capture-Mark-Recapture Data. Conservation Biology 20:1062-1073.
8. Stephens, P. A., O. Yu. Zaumyslova, D. G. Miquelle, A. I. Myslenkov, and G. D. Hayward. 2006. Estimating population density from indirect sign: track counts and the Formozov-Malyshev-Pereleshin formula. Animal Conservation 9:339-348. 24

[^0]: AbSTRACT.-Relative density can answer many questions regarding bird populations, precluding the necessity of taking the additional time and expense to determine absolute density. Indirect indices of relative density include auditory signals, feeding and dusting sites, and track, roost, fecal, and nest counts. Their use assumes these indicators are related to the population size.

