Porcupine Caribou in the Yukon North Slope habitat use and resource selection

Elie Gurarie SUNY ESF **EFB 390: Special Lecture**

Goals

- 1. Identify **habitat variables** that are important to / preferentially used by PCH caribou in the Yukon North Slope.
- 2. Spatially **map** areas of greater / lesser importance.
- 3. Use this information to **predict potential impacts** of landscape change, e.g. **development**

Study Area: Yukon North Slope

- Within Yukon Territory and N. of Brooks Range
- ~22,000 km²

Study Area: Yukon North Slope

- Within Yukon Territory and N. of Brooks Range
- ~22,000 km²
- Ivvavik N.P. set aside as protected area, ~45%

Data: Collared Caribou

• Since 1998, 175 caribou tracked ...

Seasonal use of YNS

Data: Environmental Covariates

- 1. Elevation
- 2. Productivity
- 3. Land-cover type
 - 3b. Land cover diversity
- 4. Waterways?
- 5. Muskoxen?
- 6. Traditional Ecological Knowledge?

Data: Elevation

From: National Topographic Data Base

Data: NDVI

Satellite-derived measure of vegetative productivity.

Coarsely measured (500x500m).

We used **maximum NDVI** averaged over period 2012-2017.

Normalized Difference Vegetation Index (NDVI)

Data: Land-cover

Assembled by Terrestrial Ecosystem Mapping Team for Yukon Gov't.

Combines **satellite** imagery, **aerial** imagery, **ground truthing**, lots of **modeling**.

Predictive Ecosystem Mapping (PEM)

Data: Land-cover

6x6m resolution – very high!
(e.g. ... smaller than GPS error.)

27 land classes, of which:

- 31% TUSSOCK
- 15% ROCK-LICHEN
- 10% Mesic Sparse Low Shrub Tundra

Predictive Ecosystem Mapping (PEM)

Analysis: Resource Selection Functions

Q: How do locations that are **used** by animals compare to **available** locations?

Steps:

- 1. Find used locations (*collaring data*)
- 2. Define "available" locations (random points in YNS)
- 3. Find environmental variables in both.

- ☆ Random point
- **K** Caribou location

Landscape layers

Analysis: Resource Selection Functions

Q: How do locations that are **used** by animals compare to **available** locations?

Steps:

- 1. Find used locations (*collaring data*)
- 2. Define "available" locations (random points in YNS)
- 3. Find environmental variables in both.
- 4. Statistically compare *used* vs. *available (fitting the RSF)*

Movement Data

Analysis: Resource Selection Functions

Q: How do locations that are **used** by animals compare to **available** locations?

Steps:

- 1. Find used locations (*collaring data*)
- 2. Define "available" locations (random points in YNS)
- 3. Find environmental variables in both.
- 4. Statistically compare *used* vs. *available (fitting the RSF)*
- 5. Use this statistical model to "predict" use over landscape.

Movement Data

Results: Empirical comparisons

Results: Empirical comparisons

Some patterns:

- Much higher summer use of "ultra-Tussock" & "shrub-Tundras"
- Much higher spring use of "Shrub-sedge Tussock"

Results: Fitted RSF – model selection

Model	spring		summer	
	₽ ² _c	ΔΒΙϹ	R ² _c	ΔΒΙϹ
DEM + NDVI + PEM	0.07	0.0	0.23	0.0
DEM + PEM	0.07	12.1	0.2	169.7
PEM	0	45.0	0	676.0
PEM + NDVI	0.1	49.9	0.2	392.5
DEM + NDVI * PEM	0.09	76.8	0.26	117.1
NDVI * PEM	0.08	127.0	0.22	483.1
NDVI + DEM * PEM	0	170.0	0	274.0
DEM * PEM	0.1	184.0	0.2	425.9
DEM * NDVI	0.04	224.5	0.19	_
DEM + NDVI	0.02	277.2	0.15	311.5
DEM	0	284.0	0	588.0
1	0	358.9	0	1256.2
NDVI	0	366.0	0.05	897.1

THIS IS THE BEST MODEL! We will talk about why later.

Takeaways:

- For **both seasons** all **THREE** variables are important as main effects.
- Summer model explains *much more* (23%) than Spring model (7%).

Note: "DEM" is second-order polynomial: $DEM + DEM^2$

Results: Fitted RSF – Elevation preferences

Higher elevations preferred in summer (~ 600 m.)

Results: Fitted RSF – NDVI preferences

Much stronger preference for more productive zones in summer

Results: Fitted RSF – landcover preferences

Nearly opposite preferences in summer vs spring!

Spring:

- likes Shrub-Sedge Tussock
- avoids most everything else
- really avoids Herb-Willow Riparian

Summer:

- love all 5 most common habitats Tussock to Subxerix Sparse Dwarf Shrub Tundra ...
- but NOT Shrub-Sedge Tussock
- avoid Sparse Medium-Tall Shrub / Herb-Moss
- kinda likes Herb-Willow Riparian

Use the model to make an RSF map

Currently protected area not in peak RSF

also:

- Martin Kienzler
- Kim Heinemeyer
- Julia Smith

