Population Ecology II: Limits on Population Growth

EFB 390: Wildife Ecology and Management

Dr. Elie Gurarie

Estimating exponential growth rate from two points

We fitted this with just two points:
year N
197060
20101000
by solving for:
$N_{2010}=N_{1970} \times \lambda^{(2010-1970)}$
In a single formula:

$$
\lambda=\exp \left(\frac{\log N_{t}-\log N_{0}}{t}\right)
$$

$\lambda=\exp (0.07)=\mathbf{1 . 0 7 2 5}$
7.25\% annual growth

But you could/should use ALL the data!

Using linear model of $\log (N)$ to estimate growth rate

Look how linear it's become!
]

But you could/should use ALL the data!

Population Growth model:

$$
N_{t}=N_{0} \lambda^{t}
$$

Log of both sides:

$$
\log \left(N_{t}\right)=\log \left(N_{0}\right)+\log (\lambda) \times t
$$

this is a linear model!

$$
Y=\alpha+\beta X
$$

where
$\widehat{\beta}=\log (\widehat{\lambda})-$ so $-\hat{\lambda}=\exp (\widehat{\beta})$
$\operatorname{lm}(\log ($ count $) \sim$ year, data $=$ WA_seaotters)
Model output:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathbf{t}\|)$
(Intercept)	-140.2227	4.7318	-29.6344	0
year	0.0733	0.0024	30.9533	0

Using ALL THE DATA, we get the benefit of a precision estimate as well:

$$
\widehat{\lambda}=\exp (\widehat{\beta}) ; \widehat{\lambda}=1.076 \pm 0.005
$$

(actually, 95% confidence interval is not quite symmetric:

$$
\exp \left(\widehat{\beta}-2 \sigma_{\beta}\right), \exp \left(\widehat{\beta}+2 \sigma_{\beta}\right)
$$

but close enough)

Look how linear it's become

Sources of variation?

Demographic Stochasticity

Stochasticity means: randomness in time.
Demography is the Science of Population Dynamics. Often it refers specifically to births and deaths (and movements ... but we're still looking at closed population).

Individually, all demographic processes are stochastic. An individual has some probability of dying at any moment. An individual has some probability of reproducing (or some probability distribution of number of offspring) at a given time.

Question: How important is the randomness of individual events for a population process?

More specific \mathbf{Q} : What is the probability of extinction?

Observation error.

- How precise/accurate is the actual estimate?

Unexpected immigration / emigration.

- check assumptions about "closed population"

Environmental Stochasticity

Environment good / bad affecting birth and death for all animals.

Human Experiment

[^0]
Cranking this experiment very many times.

Even when population growth is 0 ...

On average, the number of individuals at time $t+1$ is the number that survived + the number that reproduced of those that survived.

$$
E\left(N_{t+1}\right)=p_{s} N_{t}+p_{b} p_{s} N_{t}=p_{s}\left(1+p_{b}\right) N_{t}
$$

So (in our coin flip example)

$$
\widehat{\lambda}=p_{s}\left(1+p_{b}\right)=0.75
$$

What does that mean for our population!?
Extinction is inevitable!

Even if the population growth is 0 (neither growing nor falling)

$$
\widehat{\lambda}=0.5 \times(1+1)=1
$$

demographic stochasticity leads to some probability of extinction always.

Main take-away

Demographic stochasticity is important only for small populations.

Environmental Stochasticity

- Affects entire population
- Can ALSO increase risk of extinction
- or at least drive populations

Figure 2. Time series of annual rainfall (01.06-31.05 each year) (squares), adult mortality (over same periods) (filled circles) and the multiplicative increase in population size from year to year (open circles). The correlation between adult mortality and rainfall $=0.549(p<0.02)$ and that between change in population size and rainfall $=-0.695(p<0.001)$.

As populations grow ...

Fundamental population equation

$$
\Delta N=B-D+I-E
$$

Exponential growth assumes these (especially Birth \& Death) are proportional to N.
But at high N ... B can fall, or D can rise, or I can decrease or E can increase.

Density dependence

Means that the rate of a parameter(e.g. $b=\frac{B}{N}$ or $d=\frac{D}{N}$ is:

- (a) NOT constant
- (b) dependent on total population (or density) N.

Example: Wolf populations

- Dispersal into new area, mainly wolf mating pairs.
- Highly territorial!
- Wolves produce up to 4 pups per litter that survive
- If there are no neighbors, wolves will disperse to found new packs
- Pack with 8 adults or 2 adults, still produces (about) 4 pups per litter
- If there are lots of neighbors, packs become larger (more individuals) in smaller territories.

Annual Mean Pack Territory Size 1981-2006

c Wolf pack teritories in 1995-1996
d Wolf pack teritories in 2005-2006

Human-wolf experiment model

basics of model

- 8 possible territories
- 1 initial dispersing wolf (female)
each season ...
- One female / pack gives birth to 2 offspring
- Offspring can choose whether to disperse or not
- $1 / 4$ of all wolves die each year

[^1]
Results of Human Wolf Experiment

Looks a lot like initial exponential growth stabilizes around 20 ind as die-offs balance out births

Modeling wolf population

Population equation:

$$
N_{t}=(1+b-d) \times N_{t-1}
$$

Death rate is constant: $d=0.25$
Birth rate is high when population is low: $b_{0}=2$
Birth rate is small when population is high:

- $N=1 ; B=2 ; b=2$
- $N=8 ; B=16 ; b=2$

But it hits an absolute maximum of 16 total. So if:

- $N=32 ; B=16 ; b=1 / 2$
- $N=64 ; B=16 ; b=1 / 4$

Population growth rates

Some Concepts

- Natural populations are always eventually limited
- The "cap" on a population is called the Carrying Capacity (symbol: \mathbf{K}). This is
- When population rates (b, d, also i, e) depend on the total population, this is called: Density Dependence
- The maximum growth rate $(\max b-d)$ is called the intrinsic growth rate.

Logistic growth

Logistic growth is a specific kind of Density Dependent growth where the relationship between r and N is linear. The formula is:

$$
r=r_{0}(1-N / K)
$$

Population growth rates

logistic growth in time

- At $N=0$ - growth $=0$
- At N slightly above 0 - growth maximum $\approx r_{0}$
- At $N=K$ - growth $=0$
- At $N>K$ - growth <0

Intrinsic growth rates

Strong Relationships with body size:

$$
r_{0}=1.5 W^{-0.36}
$$

(W) is live weight in kilograms
Q. Why would this be the case?

Table 6.1 Expected intrinsic rates of increase r_{m} on a yearly basis for herbivorous mammals as estimated from mean adult live weight.

Weight (kg)	r_{m}
1	1.50
10	0.65
100	0.29
1000	0.08

Fryxell chapter 6

Different models of density dependence

What is it that depends on density?

Is it birth? Is it death? Is it linear? Is it curvy?

Fig. 8.4 Model of densitydependent and densityindependent processes. (a) Birth rate, b, is held constant over all densities while mortality, d, is density dependent. The population returns to the equilibrium point, K, if disturbed. The instantaneous rate of increase, r, is the difference between b and d. (b) As in (a) but b is density dependent and d is density independent. (c) Both b and d are density dependent. (d) d is curvilinear so that the density dependence is stronger at higher population densities.

$$
\text { Population density } \longrightarrow
$$

Fryxell chapter 8.

Density dependent mortality \& fecundity

- Calf / pup / juvenile mortality is highest when densities are highest.
- Fecundity (\# of offspring per female) falls at high densities.
- This effect mainly kicks in at very high numbers (not linear).

Concave curves: Butterflies

Carrying capacity

Ecological carrying capacity

Basically - K of a logistic growth
Limited (almost always) by:

- resources:
- food
- shelter
- breeding habitat
- space
- interactions (predation / parasites / disease)

Some references

- Benton, T. G., A. Grant, and T. H. Clutton-Brock. 1995. Does environmental stochasticity matter? Analysis of red deer life-histories on Rum. Evolutionary Ecology 9:559-574.
- Chapman, E. J., and C. J. Byron. 2018. The flexible application of carrying capacity in ecology. Global Ecology and Conservation 13:e00365.
- Fowler, C. W. 1981. Density Dependence as Related to Life History Strategy. Ecology 62:602-610
- Laidre, K. L., R. J. Jameson, S. J. Jeffries, R. C. Hobbs, C. E. Bowlby, and G. R. VanBlaricom. 2002. Estimates of carrying capacity for sea otters in Washington state. Wildlife Society Bulletin:1172-1181.
 management and conservation planning. Journal for Nature Conservation 62:126018.
 Oecologia 161:227-239.
- Potvin, F., and J. Huot. 1983. Estimating Carrying Capacity of a White-Tailed Deer Wintering Area in Quebec. The Journal of Wildlife Management 47:463.
- Sibly, R. M., D. Barker, M. C. Denham, J. Hone, and M. Pagel. 2005. On the Regulation of Populations of Mammals, Birds, Fish, and Insects. Science 309:607-610.
 28:841-851.
 New York, New York, NY.

[^0]: - 15 students
 - Flip a survival coin.
 - If you die (tails) sit down, if you live (heads) stay standing
 - Flip a reproduction coin.
 - If you reproduce (heads) call on another student to stand

[^1]: Enter data here

